Chinese clinical named entity recognition using pre-trained BERT model

Related tags

Deep Learningbertcner
Overview

Chinese clinical named entity recognition (CNER) using pre-trained BERT model

Introduction

Code for paper Chinese clinical named entity recognition with variant neural structures based on BERT methods

Paper url: https://www.sciencedirect.com/science/article/pii/S1532046420300502

We pre-trained BERT model to improve the performance of Chinese CNER. Different layers such as Long Short-Term Memory (LSTM) and Conditional Random Field (CRF) were used to extract the text features and decode the predicted tags respectively. And we also proposed a new strategy to incorporate dictionary features into the model. Radical features of Chinese characters were also used to improve the model performance.

Model structure

Model Structure

Usage

Pre-trained models

For replication, we uploaded two models in Baidu Netdisk.

Link: https://pan.baidu.com/s/1obzG6OSbu77duhusWg2xmQ Code: k53q

Examples

To replicate the result of CCKS-2018 dataset

python main.py \
--data_dir=data/ccks_2018 \
--bert_model=model/  \
--output_dir=./output  \
--terminology_dicts_path="{'medicine':'data/ccks_2018/drug_dict.txt','surgery':'data/ccks_2018/surgery_dict.txt'}" \
--radical_dict_path data/radical_dict.txt \
--constant=0 \
--add_radical_or_not=True \
--radical_one_hot=False \
--radical_emb_dim=20 \
--max_seq_length=480 \
--do_train=True \
--do_eval=True \
--train_batch_size=6 \
--eval_batch_size=4 \
--hidden_dim=64 \
--learning_rate=5e-5 \
--num_train_epochs=5 \
--gpu_id=3 \

Results

CCKS-2018 dataset

Method P R F1
FT-BERT+BiLSTM+CRF 88.57 89.02 88.80
+dictionary 88.58 89.17 88.87
+radical(one-hot encoding) 88.51 89.39 88.95
+radical(random embedding) 89.24 89.11 89.17
+dictionary +radical 89.42 89.22 89.32
ensemble 89.59 89.54 89.56
Team Name Method F1
Yang and Huang (2018) CRF(feature-rich + rule) 89.26
heiheihahei LSTM-CRF(ensemble) 88.92
Luo et al.(2018) LSTM-CRF(ensemble) 88.63
dous12 - 88.37
chengachengcheng - 88.30
NUBT-IBDL - 87.62
Our FT-BERT+BiLSTM +CRF+Dictionary(ensemble) 89.56

CCKS-2017 dataset

Method P R F1
FT-BERT+BiLSTM+CRF 91.64 90.98 91.31
+dictionary 91.49 90.97 91.23
+radical(one-hot encoding) 91.83 90.80 91.35
+radical(random embedding) 92.07 90.77 91.42
+dictionary+radical 91.76 90.88 91.32
ensemble 92.06 91.15 91.60
Team Name Method F1
Qiu et al. (2018b) RD-CNN-CRF 91.32
Wang et al. (2019) BiLSTM-CRF+Dictionary 91.24
Hu et al. (2017) BiLSTM-FEA(ensemble) 91.03
Zhang et al. (2018) BiLSTM-CRF(mt+att+ms) 90.52
Xia and Wang (2017) BiLSTM-CRF(ensemble) 89.88
Ouyang et al. (2017) BiRNN-CRF 88.85
Li et al. (2017) BiLSTM-CRF(specialized +lexicons) 87.95
Our FT-BERT+BiLSTM +CRF+Dictionary(ensemble) 91.60
Owner
Xiangyang Li
Xiangyang Li
Cupytorch - A small framework mimics PyTorch using CuPy or NumPy

CuPyTorch CuPyTorch是一个小型PyTorch,名字来源于: 不同于已有的几个使用NumPy实现PyTorch的开源项目,本项目通过CuPy支持

Xingkai Yu 23 Aug 17, 2022
[ICRA2021] Reconstructing Interactive 3D Scene by Panoptic Mapping and CAD Model Alignment

Interactive Scene Reconstruction Project Page | Paper This repository contains the implementation of our ICRA2021 paper Reconstructing Interactive 3D

97 Dec 28, 2022
This solves the autonomous driving issue which is supported by deep learning technology. Given a video, it splits into images and predicts the angle of turning for each frame.

Self Driving Car An autonomous car (also known as a driverless car, self-driving car, and robotic car) is a vehicle that is capable of sensing its env

Sagor Saha 4 Sep 04, 2021
An atmospheric growth and evolution model based on the EVo degassing model and FastChem 2.0

EVolve Linking planetary mantles to atmospheric chemistry through volcanism using EVo and FastChem. Overview EVolve is a linked mantle degassing and a

Pip Liggins 2 Jan 17, 2022
Churn prediction

Churn-prediction Churn-prediction Data preprocessing:: Label encoder is used to normalize the categorical variable Data Transformation:: For each data

1 Sep 28, 2022
Implementation of the famous Image Manipulation\Forgery Detector "ManTraNet" in Pytorch

Who has never met a forged picture on the web ? No one ! Everyday we are constantly facing fake pictures touched up in Photoshop but it is not always

Rony Abecidan 77 Dec 16, 2022
Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt

Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt. This is done by

Mehdi Cherti 135 Dec 30, 2022
Speckle-free Holography with Partially Coherent Light Sources and Camera-in-the-loop Calibration

Speckle-free Holography with Partially Coherent Light Sources and Camera-in-the-loop Calibration Project Page | Paper Yifan Peng*, Suyeon Choi*, Jongh

Stanford Computational Imaging Lab 19 Dec 11, 2022
IsoGCN code for ICLR2021

IsoGCN The official implementation of IsoGCN, presented in the ICLR2021 paper Isometric Transformation Invariant and Equivariant Graph Convolutional N

horiem 39 Nov 25, 2022
Omniscient Video Super-Resolution

Omniscient Video Super-Resolution This is the official code of OVSR (Omniscient Video Super-Resolution, ICCV 2021). This work is based on PFNL. Datase

36 Oct 27, 2022
Implementing SYNTHESIZER: Rethinking Self-Attention in Transformer Models using Pytorch

Implementing SYNTHESIZER: Rethinking Self-Attention in Transformer Models using Pytorch Reference Paper URL Author: Yi Tay, Dara Bahri, Donald Metzler

Myeongjun Kim 66 Nov 30, 2022
Put blind watermark into a text with python

text_blind_watermark Put blind watermark into a text. Can be used in Wechat dingding ... How to Use install pip install text_blind_watermark Alice Pu

郭飞 164 Dec 30, 2022
LONG-TERM SERIES FORECASTING WITH QUERYSELECTOR – EFFICIENT MODEL OF SPARSEATTENTION

Query Selector Here you can find code and data loaders for the paper https://arxiv.org/pdf/2107.08687v1.pdf . Query Selector is a novel approach to sp

MORAI 62 Dec 17, 2022
Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark (ICCV 2021)

Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark (ICCV 2021) Kun Wang, Zhenyu Zhang, Zhiqiang Yan, X

kunwang 66 Nov 24, 2022
InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Jan 09, 2023
PyTorch implementation of SmoothGrad: removing noise by adding noise.

SmoothGrad implementation in PyTorch PyTorch implementation of SmoothGrad: removing noise by adding noise. Vanilla Gradients SmoothGrad Guided backpro

SSKH 143 Jan 05, 2023
Medical Image Segmentation using Squeeze-and-Expansion Transformers

Medical Image Segmentation using Squeeze-and-Expansion Transformers Introduction This repository contains the code of the IJCAI'2021 paper 'Medical Im

askerlee 172 Dec 20, 2022
✔️ Visual, reactive testing library for Julia. Time machine included.

PlutoTest.jl (alpha release) Visual, reactive testing library for Julia A macro @test that you can use to verify your code's correctness. But instead

Pluto 68 Dec 20, 2022
SafePicking: Learning Safe Object Extraction via Object-Level Mapping, ICRA 2022

SafePicking Learning Safe Object Extraction via Object-Level Mapping Kentaro Wad

Kentaro Wada 49 Oct 24, 2022
The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding.

SuperGen The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding. Requirements Before running, you

Yu Meng 38 Dec 12, 2022