LAMDA: Label Matching Deep Domain Adaptation

Overview

LAMDA: Label Matching Deep Domain Adaptation

GitHub top languageGitHub last commitGitHub repo sizeGitHub license

This is the implementation of the paper LAMDA: Label Matching Deep Domain Adaptation which has been accepted at ICML 2021.

A. Setup

A.1. Install Package Dependencies

Install manually

Python Environment: >= 3.5
Tensorflow: >= 1.9

Install automatically from YAML file

pip install --upgrade pip
conda env create --file tf1.9py3.5.yml

[UPDATE] Install tensorbayes

Please note that tensorbayes 0.4.0 is out of date. Please copy a newer version to the env folder (tf1.9py3.5) using tensorbayes.tar

source activate tf1.9py3.5
pip install tensorbayes
tar -xvf tensorbayes.tar
cp -rf /tensorbayes/* /opt/conda/envs/tf1.9py3.5/lib/python3.5/site-packages/tensorbayes/

A.2. Datasets

Please download Office-31 here and unzip extracted features in the datasets folder.

B. Training

We first navigate to model folder, and then run run_lamda.py file as bellow:

cd model
  1. A --> W task
python run_lamda.py 1 amazon webcam format csv num_iters 20000 summary_freq 400 learning_rate 0.0001 inorm True batch_size 310 src_class_trade_off 1.0 domain_trade_off 0.1 src_vat_trade_off 0.1 trg_trade_off 0.1 save_grads False cast_data False cnn_size small update_target_loss False m_on_D_trade_off 1.0 m_plus_1_on_D_trade_off 1.0 m_plus_1_on_G_trade_off 1.0 m_on_G_trade_off 0.1 data_path ""
  1. A --> D task
python run_lamda.py 1 amazon dslr format csv num_iters 20000 summary_freq 400 learning_rate 0.0001 inorm True batch_size 310 src_class_trade_off 1.0 domain_trade_off 0.1 src_vat_trade_off 1.0 trg_trade_off 0.1 save_grads False cast_data False cnn_size small update_target_loss False m_on_D_trade_off 1.0 m_plus_1_on_D_trade_off 1.0 m_plus_1_on_G_trade_off 1.0 m_on_G_trade_off 0.05 data_path ""
  1. D --> W task
python run_lamda.py 1 dslr webcam format csv num_iters 20000 summary_freq 400 learning_rate 0.0001 inorm True batch_size 155 src_class_trade_off 1.0 domain_trade_off 0.1 src_vat_trade_off 0.1 trg_trade_off 0.1 save_grads False cast_data False cnn_size small update_target_loss False m_on_D_trade_off 1.0 m_plus_1_on_D_trade_off 1.0 m_plus_1_on_G_trade_off 1.0 m_on_G_trade_off 0.1 data_path ""
  1. W --> D task
python run_lamda.py 1 webcam dslr format csv num_iters 20000 summary_freq 400 learning_rate 0.0001 inorm True batch_size 310 src_class_trade_off 1.0 domain_trade_off 0.1 src_vat_trade_off 0.1 trg_trade_off 0.1 save_grads False cast_data False cnn_size small update_target_loss False m_on_D_trade_off 1.0 m_plus_1_on_D_trade_off 1.0 m_plus_1_on_G_trade_off 1.0 m_on_G_trade_off 0.1 data_path ""
  1. D --> A task
python run_lamda.py 1 dslr amazon format csv num_iters 20000  sumary_freq 400 learning_rate 0.0001 inorm True batch_size 155 src_class_trade_off 1.0 domain_trade_off 0.1 src_vat_trade_off 1.0 trg_trade_off 0.1 save_grads False cast_data False cnn_size small update_target_loss False m_on_D_trade_off 1.0 m_plus_1_on_D_trade_off 1.0 m_plus_1_on_G_trade_off 1.0 m_on_G_trade_off 1.0 data_path ""
  1. W --> A task
python run_lamda.py 1 webcam amazon format csv num_iters 20000 summary_freq 400 learning_rate 0.0001 inorm True batch_size 310 src_class_trade_off 1.0 domain_trade_off 0.1 src_vat_trade_off 1.0 trg_trade_off 0.1 save_grads False cast_data False cnn_size small update_target_loss False m_on_D_trade_off 1.0 m_plus_1_on_D_trade_off 1.0 m_plus_1_on_G_trade_off 1.0 m_on_G_trade_off 1.0 data_path ""

C. Results

Methods A --> W A --> D D --> W W --> D D --> A W --> A Avg
ResNet-50 [1] 70.0 65.5 96.1 99.3 62.8 60.5 75.7
DeepCORAL [2] 83.0 71.5 97.9 98.0 63.7 64.5 79.8
DANN [3] 81.5 74.3 97.1 99.6 65.5 63.2 80.2
ADDA [4] 86.2 78.8 96.8 99.1 69.5 68.5 83.2
CDAN [5] 94.1 92.9 98.6 100.0 71.0 69.3 87.7
TPN [6] 91.2 89.9 97.7 99.5 70.5 73.5 87.1
DeepJDOT [7] 88.9 88.2 98.5 99.6 72.1 70.1 86.2
RWOT [8] 95.1 94.5 99.5 100.0 77.5 77.9 90.8
LAMDA 95.2 96.0 98.5 100.0 87.3 84.4 93.0

D. Citations

Please cite the paper if LAMDA is helpful for your research:

@InProceedings{pmlr-v139-le21a,
  title = 	 {LAMDA: Label Matching Deep Domain Adaptation},
  author =       {Le, Trung and Nguyen, Tuan and Ho, Nhat and Bui, Hung and Phung, Dinh},
  booktitle = 	 {Proceedings of the 38th International Conference on Machine Learning},
  pages = 	 {6043--6054},
  year = 	 {2021},
  editor = 	 {Meila, Marina and Zhang, Tong},
  volume = 	 {139},
  series = 	 {Proceedings of Machine Learning Research},
  month = 	 {18--24 Jul},
  publisher =    {PMLR},
  pdf = 	 {http://proceedings.mlr.press/v139/le21a/le21a.pdf},
  url = 	 {https://proceedings.mlr.press/v139/le21a.html},
  abstract = 	 {Deep domain adaptation (DDA) approaches have recently been shown to perform better than their shallow rivals with better modeling capacity on complex domains (e.g., image, structural data, and sequential data). The underlying idea is to learn domain invariant representations on a latent space that can bridge the gap between source and target domains. Several theoretical studies have established insightful understanding and the benefit of learning domain invariant features; however, they are usually limited to the case where there is no label shift, hence hindering its applicability. In this paper, we propose and study a new challenging setting that allows us to use a Wasserstein distance (WS) to not only quantify the data shift but also to define the label shift directly. We further develop a theory to demonstrate that minimizing the WS of the data shift leads to closing the gap between the source and target data distributions on the latent space (e.g., an intermediate layer of a deep net), while still being able to quantify the label shift with respect to this latent space. Interestingly, our theory can consequently explain certain drawbacks of learning domain invariant features on the latent space. Finally, grounded on the results and guidance of our developed theory, we propose the Label Matching Deep Domain Adaptation (LAMDA) approach that outperforms baselines on real-world datasets for DA problems.}
}

E. References

E.1. Baselines:

[1] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, 2016.

[2] B. Sun and K. Saenko. Deep coral: Correlation alignment for deep domain adaptation. In Gang Hua and Hervé Jéegou, editors, Computer Vision – ECCV 2016 Workshops, pages 443–450, Cham, 2016. Springer International Publishing.

[3] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, and V. Lempitsky. Domain-adversarial training of neural networks. J. Mach. Learn. Res., 17(1):2096–2030, jan 2016.

[4] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell. Adversarial discriminative domain adaptation. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2962–2971, 2017.

[5] M. Long, Z. Cao, J. Wang, and M. I. Jordan. Conditional adversarial domain adaptation. In Advances in Neural Information Processing Systems 31, pages 1640–1650. Curran Associates, Inc., 2018.

[6] Y. Pan, T. Yao, Y. Li, Y. Wang, C. Ngo, and T. Mei. Transferrable prototypical networks for unsupervised domain adaptation. In CVPR, pages 2234–2242, 2019.

[7] B. B. Damodaran, B. Kellenberger, R. Flamary, D. Tuia, and N. Courty. Deepjdot: Deep joint distribution optimal transport for unsupervised domain adaptation. In Computer Vision - ECCV 2018, pages 467–483. Springer, 2018.

[8] R. Xu, P. Liu, L. Wang, C. Chen, and J. Wang. Reliable weighted optimal transport for unsupervised domain adaptation. In CVPR 2020, June 2020.

E.2. GitHub repositories:

  • Some parts of our code (e.g., VAT, evaluation, …) are rewritten with modifications from DIRT-T.
Owner
Tuan Nguyen
Interested in Computer Vision, Domain Adaptation, Optimal Transport.
Tuan Nguyen
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our n

58 Dec 23, 2022
Torchserve server using a YoloV5 model running on docker with GPU and static batch inference to perform production ready inference.

Yolov5 running on TorchServe (GPU compatible) ! This is a dockerfile to run TorchServe for Yolo v5 object detection model. (TorchServe (PyTorch librar

82 Nov 29, 2022
Deep Learning (with PyTorch)

Deep Learning (with PyTorch) This notebook repository now has a companion website, where all the course material can be found in video and textual for

Alfredo Canziani 6.2k Jan 07, 2023
Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021)

Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021) This repository contains the code

149 Dec 15, 2022
OntoProtein: Protein Pretraining With Ontology Embedding

OntoProtein This is the implement of the paper "OntoProtein: Protein Pretraining With Ontology Embedding". OntoProtein is an effective method that mak

ZJUNLP 80 Dec 14, 2022
Deep Learning Head Pose Estimation using PyTorch.

Hopenet is an accurate and easy to use head pose estimation network. Models have been trained on the 300W-LP dataset and have been tested on real data with good qualitative performance.

Nataniel Ruiz 1.3k Dec 26, 2022
Implementation of Google Brain's WaveGrad high-fidelity vocoder

WaveGrad Implementation (PyTorch) of Google Brain's high-fidelity WaveGrad vocoder (paper). First implementation on GitHub with high-quality generatio

Ivan Vovk 363 Dec 27, 2022
TAUFE: Task-Agnostic Undesirable Feature DeactivationUsing Out-of-Distribution Data

A deep neural network (DNN) has achieved great success in many machine learning tasks by virtue of its high expressive power. However, its prediction can be easily biased to undesirable features, whi

KAIST Data Mining Lab 8 Dec 07, 2022
Multi-Scale Progressive Fusion Network for Single Image Deraining

Multi-Scale Progressive Fusion Network for Single Image Deraining (MSPFN) This is an implementation of the MSPFN model proposed in the paper (Multi-Sc

Kuijiang 128 Nov 21, 2022
Official implementations of PSENet, PAN and PAN++.

News (2021/11/03) Paddle implementation of PAN, see Paddle-PANet. Thanks @simplify23. (2021/04/08) PSENet and PAN are included in MMOCR. Introduction

395 Dec 14, 2022
Python code to fuse multiple RGB-D images into a TSDF voxel volume.

Volumetric TSDF Fusion of RGB-D Images in Python This is a lightweight python script that fuses multiple registered color and depth images into a proj

Andy Zeng 845 Jan 03, 2023
Awesome-google-colab - Google Colaboratory Notebooks and Repositories

Unofficial Google Colaboratory Notebook and Repository Gallery Please contact me to take over and revamp this repo (it gets around 30k views and 200k

Derek Snow 1.2k Jan 03, 2023
Educational API for 3D Vision using pose to control carton.

Educational API for 3D Vision using pose to control carton.

41 Jul 10, 2022
An end-to-end image translation model with weight-map for color constancy

CCUnet An end-to-end image translation model with weight-map for color constancy 1. Download the dataset (take Colorchecker_recommended dataset as an

Jianhui Qiu 1 Dec 21, 2021
End-To-End Crowdsourcing

End-To-End Crowdsourcing Comparison of traditional crowdsourcing approaches to a state-of-the-art end-to-end crowdsourcing approach LTNet on sentiment

Andreas Koch 1 Mar 06, 2022
Make your master artistic punk avatar through machine learning world famous paintings.

Master-art-punk Make your master artistic punk avatar through machine learning world famous paintings. 通过机器学习世界名画制作属于你的大师级艺术朋克头像 Nowadays, NFT is beco

Philipjhc 53 Dec 27, 2022
competitions-v2

Codabench (formerly Codalab Competitions v2) Installation $ cp .env_sample .env $ docker-compose up -d $ docker-compose exec django ./manage.py migrat

CodaLab 21 Dec 02, 2022
A simple baseline for the 2022 IEEE GRSS Data Fusion Contest (DFC2022)

DFC2022 Baseline A simple baseline for the 2022 IEEE GRSS Data Fusion Contest (DFC2022) This repository uses TorchGeo, PyTorch Lightning, and Segmenta

isaac 24 Nov 28, 2022
🇰🇷 Text to Image in Korean

KoDALLE Utilizing pretrained language model’s token embedding layer and position embedding layer as DALLE’s text encoder. Background Training DALLE mo

HappyFace 74 Sep 22, 2022
Official Implementation for "StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery" (ICCV 2021 Oral)

StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery (ICCV 2021 Oral) Run this model on Replicate Optimization: Global directions: Mapper: Check ou

3.3k Jan 05, 2023