Official implementation of the paper DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows

Related tags

Deep LearningDeFlow
Overview

DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows

Official implementation of the paper DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows

[Paper] CVPR 2021 Oral

Setup and Installation

# create and activate new conda environment
conda create --name DeFlow python=3.7.9
conda activate DeFlow

# install pytorch 1.6 (untested with different versions)
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.1 -c pytorch
# install required packages
pip install pyyaml imageio natsort opencv-python scikit-image tqdm jupyter psutil tensorboard

# clone the repository
git clone https://github.com/volflow/DeFlow.git
cd ./DeFlow/

Dataset Preparation

We provide bash scripts that download and prepare the AIM-RWSR, NTIRE-RWSR, and DPED-RWSR datasets. The script generates all the downsampled images required by DeFlow in advance for faster training.

Validation datasets

cd ./datasets
bash get-AIM-RWSR-val.sh 
bash get-NTIRE-RWSR-val.sh 

Training datasets

cd ./datasets
bash get-AIM-RWSR-train.sh 
bash get-NTIRE-RWSR-train.sh 

DPED dataset
For the DPED-RWSR dataset, we followed the approach of https://github.com/jixiaozhong/RealSR and used KernelGAN https://github.com/sefibk/KernelGAN to estimate and apply blur kernels to the downsampled high-quality images. DeFlow is then trained with these blurred images. More detailed instructions on this will be added here soon.

Trained Models

DeFlow Models
To download the trained DeFlow models run:

cd ./trained_models/
bash get-DeFlow-models.sh 

Pretrained RRDB models
To download the pretrained RRDB models used for training run:

cd ./trained_models/
bash get-RRDB-models.sh 

ESRGAN Models
The ESRGAN models trained with degradations generated by DeFlow will be made available for download here soon.

Validate Pretrained Models

  1. Download and prepare the corresponding validation datasets (see above)
  2. Download the pretrained DeFlow models (see above)
  3. Run the below codes to validate the model on the images of the validation set:
cd ./codes
CUDA_VISIBLE_DEVICES=-1 python validate.py -opt DeFlow-AIM-RWSR.yml -model_path ../trained_models/DeFlow_models/DeFlow-AIM-RWSR-100k.pth -crop_size 256 -n_max 5;
CUDA_VISIBLE_DEVICES=-1 python validate.py -opt DeFlow-NTIRE-RWSR.yml -model_path ../trained_models/DeFlow_models/DeFlow-NTIRE-RWSR-100k.pth -crop_size 256 -n_max 5;

If your GPU has enough memory or -crop_size is set small enough you can remove CUDA_VISIBLE_DEVICES=-1 from the above commands to run the validation on your GPU.

The resulting images are saved to a subfolder in ./results/ which again contains four subfolders:

  • /0_to_1/ contains images from domain X (clean) translated to domain Y (noisy). This adds the synthetic degradations
  • /1_to_0/ contains images from domain Y (noisy) translated to domain X (clean). This reverses the degradation model and shows some denoising performance
  • /0_gen/ and the /1_gen/ folders contain samples from the conditional distributions p_X(x|h(x)) and p_Y(x|h(x)), respectively

Generate Synthetic Dataset for Downstream Tasks

To apply the DeFlow degradation model to a folder of high-quality images use the translate.py script. For example to generate the degraded low-resolution images for the AIM-RWSR dataset that we used to train our ESRGAN model run:

## download dataset if not already done
# cd ./datasets
# bash get-AIM-RWSR-train.sh
# cd ..
cd ./codes
CUDA_VISIBLE_DEVICES=-1 python translate.py -opt DeFlow-AIM-RWSR.yml -model_path ../trained_models/DeFlow_models/DeFlow-AIM-RWSR-100k.pth -source_dir ../datasets/AIM-RWSR/train-clean-images/4x/ -out_dir ../datasets/AIM-RWSR/train-clean-images/4x_degraded/

Training the downstream ESRGAN models
We used the training pipeline from https://github.com/jixiaozhong/RealSR to train our ESRGAN models trained on the high-resolution /1x/ and low-resolution /4x_degraded/ data. The trained ESRGAN models and more details on how to reproduce them will be added here soon.

Training DeFlow

  1. Download and prepare the corresponding training datasets (see above)
  2. Download and prepare the corresponding validation datasets (see above)
  3. Download the pretrained RRDB models (see above)
  4. Run the provided train.py script with the corresponding configs
cd code
python train.py -opt ./confs/DeFlow-AIM-RWSR.yml
python train.py -opt ./confs/DeFlow-NTIRE-RWSR.yml

If you run out of GPU memory you can reduce the batch size or the patch size in the config files. To train without a GPU prefix the commands with CUDA_VISIBLE_DEVICES=-1.

Instructions for training DeFlow on the DPED dataset will be added here soon.

To train DeFlow on other datasets simply create your own config file and change the dataset paths accordingly. To pre-generate the downsampled images that are used as conditional features by DeFlow you can use the ./datasets/create_DeFlow_train_dataset.py script.

Citation

[Paper] CVPR 2021 Oral

@inproceedings{wolf2021deflow,
    author    = {Valentin Wolf and
                Andreas Lugmayr and
                Martin Danelljan and
                Luc Van Gool and
                Radu Timofte},
    title     = {DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows},
    booktitle = {{IEEE/CVF} Conference on Computer Vision and Pattern Recognition, {CVPR}},
    year      = {2021},
    url       = {https://arxiv.org/abs/2101.05796}
}
Owner
Valentin Wolf
CS Student at ETH Zurich
Valentin Wolf
Official repository of the paper 'Essentials for Class Incremental Learning'

Essentials for Class Incremental Learning Official repository of the paper 'Essentials for Class Incremental Learning' This Pytorch repository contain

33 Nov 27, 2022
Text and code for the forthcoming second edition of Think Bayes, by Allen Downey.

Think Bayes 2 by Allen B. Downey The HTML version of this book is here. Think Bayes is an introduction to Bayesian statistics using computational meth

Allen Downey 1.5k Jan 08, 2023
This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack".

Generative Dynamic Patch Attack This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack". Requirements PyTo

Xiang Li 8 Nov 17, 2022
CCP dataset from Clothing Co-Parsing by Joint Image Segmentation and Labeling

Clothing Co-Parsing (CCP) Dataset Clothing Co-Parsing (CCP) dataset is a new clothing database including elaborately annotated clothing items. 2, 098

Wei Yang 434 Dec 24, 2022
Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286

Pytorch-DPPO Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286 Using PPO with clip loss (from https

Alexis David Jacq 163 Dec 26, 2022
This repository contains the reference implementation for our proposed Convolutional CRFs.

ConvCRF This repository contains the reference implementation for our proposed Convolutional CRFs in PyTorch (Tensorflow planned). The two main entry-

Marvin Teichmann 553 Dec 07, 2022
Pytorch implementation of the DeepDream computer vision algorithm

deep-dream-in-pytorch Pytorch (https://github.com/pytorch/pytorch) implementation of the deep dream (https://en.wikipedia.org/wiki/DeepDream) computer

102 Dec 05, 2022
这是一个unet-pytorch的源码,可以训练自己的模型

Unet:U-Net: Convolutional Networks for Biomedical Image Segmentation目标检测模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Downl

Bubbliiiing 567 Jan 05, 2023
Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks

Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks Stable Neural ODE with Lyapunov-Stable Equilibrium

Kang Qiyu 8 Dec 12, 2022
MiraiML: asynchronous, autonomous and continuous Machine Learning in Python

MiraiML Mirai: future in japanese. MiraiML is an asynchronous engine for continuous & autonomous machine learning, built for real-time usage. Usage In

Arthur Paulino 25 Jul 27, 2022
Official Pytorch implementation of Meta Internal Learning

Official Pytorch implementation of Meta Internal Learning

10 Aug 24, 2022
The codebase for our paper "Generative Occupancy Fields for 3D Surface-Aware Image Synthesis" (NeurIPS 2021)

Generative Occupancy Fields for 3D Surface-Aware Image Synthesis (NeurIPS 2021) Project Page | Paper Xudong Xu, Xingang Pan, Dahua Lin and Bo Dai GOF

xuxudong 97 Nov 10, 2022
Deep Learning Interviews book: Hundreds of fully solved job interview questions from a wide range of key topics in AI.

This book was written for you: an aspiring data scientist with a quantitative background, facing down the gauntlet of the interview process in an increasingly competitive field. For most of you, the

4.1k Dec 28, 2022
Nb workflows - A workflow platform which allows you to run parameterized notebooks programmatically

NB Workflows Description If SQL is a lingua franca for querying data, Jupyter sh

Xavier Petit 6 Aug 18, 2022
This repo is to be freely used by ML devs to check the GAN performances without coding from scratch.

GANs for Fun Created because I can! GOAL The goal of this repo is to be freely used by ML devs to check the GAN performances without coding from scrat

Sagnik Roy 13 Jan 26, 2022
PyTorch code accompanying our paper on Maximum Entropy Generators for Energy-Based Models

Maximum Entropy Generators for Energy-Based Models All experiments have tensorboard visualizations for samples / density / train curves etc. To run th

Rithesh Kumar 135 Oct 27, 2022
Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Kento Nishi 22 Jul 07, 2022
face2comics by Sxela (Alex Spirin) - face2comics datasets

This is a paired face to comics dataset, which can be used to train pix2pix or similar networks.

Alex 164 Nov 13, 2022
PyTorch implementations of deep reinforcement learning algorithms and environments

Deep Reinforcement Learning Algorithms with PyTorch This repository contains PyTorch implementations of deep reinforcement learning algorithms and env

Petros Christodoulou 4.7k Jan 04, 2023
Tensors and neural networks in Haskell

Hasktorch Hasktorch is a library for tensors and neural networks in Haskell. It is an independent open source community project which leverages the co

hasktorch 920 Jan 04, 2023