End-to-end speech secognition toolkit

Overview

End-to-end speech secognition toolkit

This is an E2E ASR toolkit modified from Espnet1 (version 0.9.9).
This is the official implementation of paper:
Consistent Training and Decoding For End-to-end Speech Recognition Using Lattice-free MMI
This is also the official implementation of paper:
Improving Mandarin End-to-End Speech Recognition with Word N-gram Language Model
We achieve state-of-the-art results on two of the most popular results in Aishell-1 and AIshell-2 Mandarin datasets.
Please feel free to change / modify the code as you like. :)

Update

  • 2021/12/29: Release the first version, which contains all MMI-related features, including MMI training criteria, MMI Prefix Score (for attention-based encoder-decoder, AED) and MMI Alignment Score (For neural transducer, NT).
  • 2022/1/6: Release the word-level N-gram LM scorer.

Environment:

The main dependencies of this code can be divided into three part: kaldi, espnet and k2.

  1. kaldi is mainly used for feature extraction. To install kaldi, please follow the instructions here.
  2. Espnet is a open-source end-to-end speech recognition toolkit. please follow the instructions here to install its environment.
    2.1. Pytorch, cudatoolkit, along with many other dependencies will be install automatically during this process. 2.2. If you are going to use NT models, you are recommend to install a RNN-T warpper. Please run ${ESPNET_ROOT}/tools/installer/install_warp-transducer.sh
    2.3. Once you have installed the espnet envrionment successfully, please run pip uninstall espnet to remove the espnet library. So our code will be used.
    2.4. Also link the kaldi in ${ESPNET_ROOT}: ln -s ${KALDI-ROOT} ${ESPNET_ROOT}
  3. k2 is a python-based FST library. Please follow the instructions here to install it. GPU version is required.
    3.1. To use word N-gram LM, please also install kaldilm
  4. There might be some dependency conflicts during building the environment. We report ours below as a reference:
    4.1 OS: CentOS 7; GCC 7.3.1; Python 3.8.10; CUDA 10.1; Pytorch 1.7.1; k2-fsa 1.2 (very old for now)
    4.2 Other python libraries are in requirement.txt (It is not recommend to use this file to build the environment directly).

Results

Currently we have released examples on Aishell-1 and Aishell-2 datasets.

With MMI training & decoding methods and the word-level N-gram LM. We achieve results on Aishell-1 and Aishell-2 as below. All results are in CER%

Test set Aishell-1-dev Aishell-1-test Aishell-2-ios Aishell-2-android Aishell-2-mic
AED 4.73 5.32 5.73 6.56 6.53
AED + MMI + Word Ngram 4.08 4.45 5.26 6.22 5.92
NT 4.41 4.81 5.70 6.75 6.58
NT + MMI + Word Ngram 3.86 4.18 5.06 6.08 5.98

(example on Librispeech is not fully prepared)

Get Start

Take Aishell-1 as an example. Working process for other examples are very similar.
Prepare data and LMs

cd ${ESPNET_ROOT}/egs/aishell1
source path.sh
bash prepare.sh # prepare the data

split the json file of training data for each GPU. (we use 8GPUs)

python3 espnet_utils/splitjson.py -p 
   
     dump/train_sp/deltafalse/data.json

   

Training and decoding for NT model:

bash nt.sh      # to train the nueal transducer model

Training and decoding for AED model:

bash aed.sh     # or to train the attention-based encoder-decoder model

Several Hint:

  1. Please change the paths in path.sh accordingly before you start
  2. Please change the data to config your data path in prepare.sh
  3. Our code runs in DDP style. Before you start, you need to set them manually. We assume Pytorch distributed API works well on your machine.
export HOST_GPU_NUM=x       # number of GPUs on each host
export HOST_NUM=x           # number of hosts
export NODE_NUM=x           # number of GPUs in total (on all hosts)
export INDEX=x              # index of this host
export CHIEF_IP=xx.xx.xx.xx # IP of the master host
  1. Multiple choices are available during decoding (we take aed.sh as an example, but the usage of nt.sh is the same).
    To use the MMI-related scorers, you need train the model with MMI auxiliary criterion;

To use MMI Prefix Score (in AED) or MMI Alignment score (in NT):

bash aed.sh --stage 2 --mmi-weight 0.2

To use any external LM, you need to train them in advance (as implemented in prepare.sh)

To use word-level N-gram LM:

bash aed.sh --stage 2 --word-ngram-weight 0.4

To use character-level N-gram LM:

bash aed.sh --stage 2 --ngram-weight 1.0

To use neural network LM:

bash aed.sh --stage 2 --lm-weight 1.0

Reference

kaldi: https://github.com/kaldi-asr/kaldi
Espent: https://github.com/espnet/espnet
k2-fsa: https://github.com/k2-fsa/k2

Citations

@article{tian2021consistent,  
  title={Consistent Training and Decoding For End-to-end Speech Recognition Using Lattice-free MMI},  
  author={Tian, Jinchuan and Yu, Jianwei and Weng, Chao and Zhang, Shi-Xiong and Su, Dan and Yu, Dong and Zou, Yuexian},  
  journal={arXiv preprint arXiv:2112.02498},  
  year={2021}  
}  

@misc{tian2022improving,
      title={Improving Mandarin End-to-End Speech Recognition with Word N-gram Language Model}, 
      author={Jinchuan Tian and Jianwei Yu and Chao Weng and Yuexian Zou and Dong Yu},
      year={2022},
      eprint={2201.01995},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

Authorship

Jinchuan Tian; [email protected] or [email protected]
Jianwei Yu; [email protected] (supervisor)
Chao Weng; [email protected]
Yuexian Zou; [email protected]

Owner
Jinchuan Tian
Graduate student @ Peking University, Shenzhen; Research intern @ Tencent AI LAB;
NExT-QA: Next Phase of Question-Answering to Explaining Temporal Actions (CVPR2021)

NExT-QA We reproduce some SOTA VideoQA methods to provide benchmark results for our NExT-QA dataset accepted to CVPR2021 (with 1 'Strong Accept' and 2

Junbin Xiao 50 Nov 24, 2022
A keras implementation of ENet (abandoned for the foreseeable future)

ENet-keras This is an implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation, ported from ENet-training (lua-t

Pavlos 115 Nov 23, 2021
A general-purpose encoder-decoder framework for Tensorflow

READ THE DOCUMENTATION CONTRIBUTING A general-purpose encoder-decoder framework for Tensorflow that can be used for Machine Translation, Text Summariz

Google 5.5k Jan 07, 2023
code for `Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation`

Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation (CVPR 2021) Introduction PBR is a conceptually simple yet effective

H.Chen 143 Jan 05, 2023
Data manipulation and transformation for audio signal processing, powered by PyTorch

torchaudio: an audio library for PyTorch The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the

1.9k Dec 28, 2022
Geometric Sensitivity Decomposition

Geometric Sensitivity Decomposition This repo is the official implementation of A Geometric Perspective towards Neural Calibration via Sensitivity Dec

16 Dec 26, 2022
A Kaggle competition: discriminate gender based on handwriting

Gender discrimination based on handwriting See http://fastml.com/gender-discrimination/ for description. prep_data.py - a first step chunk_by_authors.

Zygmunt Zając 22 Jul 20, 2022
Short and long time series classification using convolutional neural networks

time-series-classification Short and long time series classification via convolutional neural networks In this project, we present a novel framework f

35 Oct 22, 2022
State-Relabeling Adversarial Active Learning

State-Relabeling Adversarial Active Learning Code for SRAAL [2020 CVPR Oral] Requirements torch = 1.6.0 numpy = 1.19.1 tqdm = 4.31.1 AL Results The

10 Jul 14, 2022
This is an official implementation for "ResT: An Efficient Transformer for Visual Recognition".

ResT By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software Technology at Nanjing University] This repo is the official implement

zhql 222 Dec 13, 2022
Use AI to generate a optimized stock portfolio

Use AI, Modern Portfolio Theory, and Monte Carlo simulation's to generate a optimized stock portfolio that minimizes risk while maximizing returns. Ho

Greg James 30 Dec 22, 2022
Facestar dataset. High quality audio-visual recordings of human conversational speech.

Facestar Dataset Description Existing audio-visual datasets for human speech are either captured in a clean, controlled environment but contain only a

Meta Research 87 Dec 21, 2022
A user-friendly research and development tool built to standardize RL competency assessment for custom agents and environments.

Built with ❤️ by Sam Showalter Contents Overview Installation Dependencies Usage Scripts Standard Execution Environment Development Environment Benchm

SRI-AIC 1 Nov 18, 2021
A CNN model to detect hand gestures.

Software Used python - programming language used, tested on v3.8 miniconda - for managing virtual environment Libraries Used opencv - pip install open

Shivanshu 6 Jul 14, 2022
A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution.

Awesome Pretrained StyleGAN2 A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution. Note the readme is a

Justin 1.1k Dec 24, 2022
A sequence of Jupyter notebooks featuring the 12 Steps to Navier-Stokes

CFD Python Please cite as: Barba, Lorena A., and Forsyth, Gilbert F. (2018). CFD Python: the 12 steps to Navier-Stokes equations. Journal of Open Sour

Barba group 2.6k Dec 30, 2022
This is a template for the Non-autoregressive Deep Learning-Based TTS model (in PyTorch).

Non-autoregressive Deep Learning-Based TTS Template This is a template for the Non-autoregressive TTS model. It contains Data Preprocessing Pipeline D

Keon Lee 13 Dec 05, 2022
Official Pytorch implementation for "End2End Occluded Face Recognition by Masking Corrupted Features, TPAMI 2021"

End2End Occluded Face Recognition by Masking Corrupted Features This is the Pytorch implementation of our TPAMI 2021 paper End2End Occluded Face Recog

Haibo Qiu 25 Oct 31, 2022
Implementation of Google Brain's WaveGrad high-fidelity vocoder

WaveGrad Implementation (PyTorch) of Google Brain's high-fidelity WaveGrad vocoder (paper). First implementation on GitHub with high-quality generatio

Ivan Vovk 363 Dec 27, 2022
Python/Rust implementations and notes from Proofs Arguments and Zero Knowledge

What is this? This is where I'll be collecting resources related to the Study Group on Dr. Justin Thaler's Proofs Arguments And Zero Knowledge Book. T

Thor 66 Jan 04, 2023