End-to-end speech secognition toolkit

Overview

End-to-end speech secognition toolkit

This is an E2E ASR toolkit modified from Espnet1 (version 0.9.9).
This is the official implementation of paper:
Consistent Training and Decoding For End-to-end Speech Recognition Using Lattice-free MMI
This is also the official implementation of paper:
Improving Mandarin End-to-End Speech Recognition with Word N-gram Language Model
We achieve state-of-the-art results on two of the most popular results in Aishell-1 and AIshell-2 Mandarin datasets.
Please feel free to change / modify the code as you like. :)

Update

  • 2021/12/29: Release the first version, which contains all MMI-related features, including MMI training criteria, MMI Prefix Score (for attention-based encoder-decoder, AED) and MMI Alignment Score (For neural transducer, NT).
  • 2022/1/6: Release the word-level N-gram LM scorer.

Environment:

The main dependencies of this code can be divided into three part: kaldi, espnet and k2.

  1. kaldi is mainly used for feature extraction. To install kaldi, please follow the instructions here.
  2. Espnet is a open-source end-to-end speech recognition toolkit. please follow the instructions here to install its environment.
    2.1. Pytorch, cudatoolkit, along with many other dependencies will be install automatically during this process. 2.2. If you are going to use NT models, you are recommend to install a RNN-T warpper. Please run ${ESPNET_ROOT}/tools/installer/install_warp-transducer.sh
    2.3. Once you have installed the espnet envrionment successfully, please run pip uninstall espnet to remove the espnet library. So our code will be used.
    2.4. Also link the kaldi in ${ESPNET_ROOT}: ln -s ${KALDI-ROOT} ${ESPNET_ROOT}
  3. k2 is a python-based FST library. Please follow the instructions here to install it. GPU version is required.
    3.1. To use word N-gram LM, please also install kaldilm
  4. There might be some dependency conflicts during building the environment. We report ours below as a reference:
    4.1 OS: CentOS 7; GCC 7.3.1; Python 3.8.10; CUDA 10.1; Pytorch 1.7.1; k2-fsa 1.2 (very old for now)
    4.2 Other python libraries are in requirement.txt (It is not recommend to use this file to build the environment directly).

Results

Currently we have released examples on Aishell-1 and Aishell-2 datasets.

With MMI training & decoding methods and the word-level N-gram LM. We achieve results on Aishell-1 and Aishell-2 as below. All results are in CER%

Test set Aishell-1-dev Aishell-1-test Aishell-2-ios Aishell-2-android Aishell-2-mic
AED 4.73 5.32 5.73 6.56 6.53
AED + MMI + Word Ngram 4.08 4.45 5.26 6.22 5.92
NT 4.41 4.81 5.70 6.75 6.58
NT + MMI + Word Ngram 3.86 4.18 5.06 6.08 5.98

(example on Librispeech is not fully prepared)

Get Start

Take Aishell-1 as an example. Working process for other examples are very similar.
Prepare data and LMs

cd ${ESPNET_ROOT}/egs/aishell1
source path.sh
bash prepare.sh # prepare the data

split the json file of training data for each GPU. (we use 8GPUs)

python3 espnet_utils/splitjson.py -p 
   
     dump/train_sp/deltafalse/data.json

   

Training and decoding for NT model:

bash nt.sh      # to train the nueal transducer model

Training and decoding for AED model:

bash aed.sh     # or to train the attention-based encoder-decoder model

Several Hint:

  1. Please change the paths in path.sh accordingly before you start
  2. Please change the data to config your data path in prepare.sh
  3. Our code runs in DDP style. Before you start, you need to set them manually. We assume Pytorch distributed API works well on your machine.
export HOST_GPU_NUM=x       # number of GPUs on each host
export HOST_NUM=x           # number of hosts
export NODE_NUM=x           # number of GPUs in total (on all hosts)
export INDEX=x              # index of this host
export CHIEF_IP=xx.xx.xx.xx # IP of the master host
  1. Multiple choices are available during decoding (we take aed.sh as an example, but the usage of nt.sh is the same).
    To use the MMI-related scorers, you need train the model with MMI auxiliary criterion;

To use MMI Prefix Score (in AED) or MMI Alignment score (in NT):

bash aed.sh --stage 2 --mmi-weight 0.2

To use any external LM, you need to train them in advance (as implemented in prepare.sh)

To use word-level N-gram LM:

bash aed.sh --stage 2 --word-ngram-weight 0.4

To use character-level N-gram LM:

bash aed.sh --stage 2 --ngram-weight 1.0

To use neural network LM:

bash aed.sh --stage 2 --lm-weight 1.0

Reference

kaldi: https://github.com/kaldi-asr/kaldi
Espent: https://github.com/espnet/espnet
k2-fsa: https://github.com/k2-fsa/k2

Citations

@article{tian2021consistent,  
  title={Consistent Training and Decoding For End-to-end Speech Recognition Using Lattice-free MMI},  
  author={Tian, Jinchuan and Yu, Jianwei and Weng, Chao and Zhang, Shi-Xiong and Su, Dan and Yu, Dong and Zou, Yuexian},  
  journal={arXiv preprint arXiv:2112.02498},  
  year={2021}  
}  

@misc{tian2022improving,
      title={Improving Mandarin End-to-End Speech Recognition with Word N-gram Language Model}, 
      author={Jinchuan Tian and Jianwei Yu and Chao Weng and Yuexian Zou and Dong Yu},
      year={2022},
      eprint={2201.01995},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

Authorship

Jinchuan Tian; [email protected] or [email protected]
Jianwei Yu; [email protected] (supervisor)
Chao Weng; [email protected]
Yuexian Zou; [email protected]

Owner
Jinchuan Tian
Graduate student @ Peking University, Shenzhen; Research intern @ Tencent AI LAB;
An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise Weight Sharing) by Sensetime Research.

An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise

45 Dec 08, 2022
Principled Detection of Out-of-Distribution Examples in Neural Networks

ODIN: Out-of-Distribution Detector for Neural Networks This is a PyTorch implementation for detecting out-of-distribution examples in neural networks.

189 Nov 29, 2022
Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss (ATVGnet)

Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss (ATVGnet) By Lele Chen , Ross K Maddox, Zhiyao Duan, Chenliang Xu. Unive

Lele Chen 218 Dec 27, 2022
On the Analysis of French Phonetic Idiosyncrasies for Accent Recognition

On the Analysis of French Phonetic Idiosyncrasies for Accent Recognition With the spirit of reproducible research, this repository contains codes requ

0 Feb 24, 2022
Invariant Causal Prediction for Block MDPs

MISA Abstract Generalization across environments is critical to the successful application of reinforcement learning algorithms to real-world challeng

Meta Research 41 Sep 17, 2022
Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, Daniel Silva, Andrew McCallum, Amr Ahmed. KDD 2019.

gHHC Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, D

Nicholas Monath 35 Nov 16, 2022
Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing

Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing Paper Introduction Multi-task indoor scene understanding is widely considered a

62 Dec 05, 2022
HEAM: High-Efficiency Approximate Multiplier Optimization for Deep Neural Networks

Approximate Multiplier by HEAM What's HEAM? HEAM is a general optimization method to generate high-efficiency approximate multipliers for specific app

4 Sep 11, 2022
Implementation of Barlow Twins paper

barlowtwins PyTorch Implementation of Barlow Twins paper: Barlow Twins: Self-Supervised Learning via Redundancy Reduction This is currently a work in

IgorSusmelj 86 Dec 20, 2022
SwinTrack: A Simple and Strong Baseline for Transformer Tracking

SwinTrack This is the official repo for SwinTrack. A Simple and Strong Baseline Prerequisites Environment conda (recommended) conda create -y -n SwinT

LitingLin 196 Jan 04, 2023
Full Stack Deep Learning Labs

Full Stack Deep Learning Labs Welcome! Project developed during lab sessions of the Full Stack Deep Learning Bootcamp. We will build a handwriting rec

Full Stack Deep Learning 1.2k Dec 31, 2022
The BCNet related data and inference model.

BCNet This repository includes the some source code and related dataset of paper BCNet: Learning Body and Cloth Shape from A Single Image, ECCV 2020,

81 Dec 12, 2022
Rule Extraction Methods for Interactive eXplainability

REMIX: Rule Extraction Methods for Interactive eXplainability This repository contains a variety of tools and methods for extracting interpretable rul

Mateo Espinosa Zarlenga 21 Jan 03, 2023
This repository contains codes of ICCV2021 paper: SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation

SO-Pose This repository contains codes of ICCV2021 paper: SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation This paper is basically an

shangbuhuan 52 Nov 25, 2022
Solution of Kaggle competition: Sartorius - Cell Instance Segmentation

Sartorius - Cell Instance Segmentation https://www.kaggle.com/c/sartorius-cell-instance-segmentation Environment setup Build docker image bash .dev_sc

68 Dec 09, 2022
Our CIKM21 Paper "Incorporating Query Reformulating Behavior into Web Search Evaluation"

Reformulation-Aware-Metrics Introduction This codebase contains source-code of the Python-based implementation of our CIKM 2021 paper. Chen, Jia, et a

xuanyuan14 5 Mar 05, 2022
Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021)

Transferable Semantic Augmentation for Domain Adaptation Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021) Paper

66 Dec 16, 2022
TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

YeongHyeon Park 7 Aug 28, 2022
PyTorch-Multi-Style-Transfer - Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 906 Jan 04, 2023
[CVPR 2021] "The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models" Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Michael Carbin, Zhangyang Wang

The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models Codes for this paper The Lottery Tickets Hypo

VITA 59 Dec 28, 2022