[Preprint] ConvMLP: Hierarchical Convolutional MLPs for Vision, 2021

Overview

Convolutional MLP

ConvMLP: Hierarchical Convolutional MLPs for Vision

Preprint link: ConvMLP: Hierarchical Convolutional MLPs for Vision

By Jiachen Li[1,2], Ali Hassani[1]*, Steven Walton[1]*, and Humphrey Shi[1,2,3]

In association with SHI Lab @ University of Oregon[1] and University of Illinois Urbana-Champaign[2], and Picsart AI Research (PAIR)[3]

Comparison

Abstract

MLP-based architectures, which consist of a sequence of consecutive multi-layer perceptron blocks, have recently been found to reach comparable results to convolutional and transformer-based methods. However, most adopt spatial MLPs which take fixed dimension inputs, therefore making it difficult to apply them to downstream tasks, such as object detection and semantic segmentation. Moreover, single-stage designs further limit performance in other computer vision tasks and fully connected layers bear heavy computation. To tackle these problems, we propose ConvMLP: a hierarchical Convolutional MLP for visual recognition, which is a light-weight, stage-wise, co-design of convolution layers, and MLPs. In particular, ConvMLP-S achieves 76.8% top-1 accuracy on ImageNet-1k with 9M parameters and 2.4 GMACs (15% and 19% of MLP-Mixer-B/16, respectively). Experiments on object detection and semantic segmentation further show that visual representation learned by ConvMLP can be seamlessly transferred and achieve competitive results with fewer parameters.

Model

How to run

Getting Started

Our base model is in pure PyTorch and Torchvision. No extra packages are required. Please refer to PyTorch's Getting Started page for detailed instructions.

You can start off with src.convmlp, which contains the three variants: convmlp_s, convmlp_m, convmlp_l:

from src.convmlp import convmlp_l, convmlp_s

model = convmlp_l(pretrained=True, progress=True)
model_sm = convmlp_s(num_classes=10)

Image Classification

timm is recommended for image classification training and required for the training script provided in this repository:

./dist_classification.sh $NUM_GPUS -c $CONFIG_FILE /path/to/dataset

You can use our training configurations provided in configs/classification:

./dist_classification.sh 8 -c configs/classification/convmlp_s_imagenet.yml /path/to/ImageNet
./dist_classification.sh 8 -c configs/classification/convmlp_m_imagenet.yml /path/to/ImageNet
./dist_classification.sh 8 -c configs/classification/convmlp_l_imagenet.yml /path/to/ImageNet

Object Detection

mmdetection is recommended for object detection training and required for the training script provided in this repository:

./dist_detection.sh $CONFIG_FILE $NUM_GPUS /path/to/dataset

You can use our training configurations provided in configs/detection:

./dist_detection.sh configs/detection/retinanet_convmlp_s_fpn_1x_coco.py 8 /path/to/COCO
./dist_detection.sh configs/detection/retinanet_convmlp_m_fpn_1x_coco.py 8 /path/to/COCO
./dist_detection.sh configs/detection/retinanet_convmlp_l_fpn_1x_coco.py 8 /path/to/COCO

Object Detection & Instance Segmentation

mmdetection is recommended for training Mask R-CNN and required for the training script provided in this repository (same as above).

You can use our training configurations provided in configs/detection:

./dist_detection.sh configs/detection/maskrcnn_convmlp_s_fpn_1x_coco.py 8 /path/to/COCO
./dist_detection.sh configs/detection/maskrcnn_convmlp_m_fpn_1x_coco.py 8 /path/to/COCO
./dist_detection.sh configs/detection/maskrcnn_convmlp_l_fpn_1x_coco.py 8 /path/to/COCO

Semantic Segmentation

mmsegmentation is recommended for semantic segmentation training and required for the training script provided in this repository:

./dist_segmentation.sh $CONFIG_FILE $NUM_GPUS /path/to/dataset

You can use our training configurations provided in configs/segmentation:

./dist_segmentation.sh configs/segmentation/fpn_convmlp_s_512x512_40k_ade20k.py 8 /path/to/ADE20k
./dist_segmentation.sh configs/segmentation/fpn_convmlp_m_512x512_40k_ade20k.py 8 /path/to/ADE20k
./dist_segmentation.sh configs/segmentation/fpn_convmlp_l_512x512_40k_ade20k.py 8 /path/to/ADE20k

Results

Image Classification

Feature maps from ResNet50, MLP-Mixer-B/16, our Pure-MLP Baseline and ConvMLP-M are presented in the image below. It can be observed that representations learned by ConvMLP involve more low-level features like edges or textures compared to the rest. Feature map visualization

Dataset Model Top-1 Accuracy # Params MACs
ImageNet ConvMLP-S 76.8% 9.0M 2.4G
ConvMLP-M 79.0% 17.4M 3.9G
ConvMLP-L 80.2% 42.7M 9.9G

If importing the classification models, you can pass pretrained=True to download and set these checkpoints. The same holds for the training script (classification.py and dist_classification.sh): pass --pretrained. The segmentation/detection training scripts also download the pretrained backbone if you pass the correct config files.

Downstream tasks

You can observe the summarized results from applying our model to object detection, instance and semantic segmentation, compared to ResNet, in the image below.

Object Detection

Dataset Model Backbone # Params APb APb50 APb75 Checkpoint
MS COCO Mask R-CNN ConvMLP-S 28.7M 38.4 59.8 41.8 Download
ConvMLP-M 37.1M 40.6 61.7 44.5 Download
ConvMLP-L 62.2M 41.7 62.8 45.5 Download
RetinaNet ConvMLP-S 18.7M 37.2 56.4 39.8 Download
ConvMLP-M 27.1M 39.4 58.7 42.0 Download
ConvMLP-L 52.9M 40.2 59.3 43.3 Download

Instance Segmentation

Dataset Model Backbone # Params APm APm50 APm75 Checkpoint
MS COCO Mask R-CNN ConvMLP-S 28.7M 35.7 56.7 38.2 Download
ConvMLP-M 37.1M 37.2 58.8 39.8 Download
ConvMLP-L 62.2M 38.2 59.9 41.1 Download

Semantic Segmentation

Dataset Model Backbone # Params mIoU Checkpoint
ADE20k Semantic FPN ConvMLP-S 12.8M 35.8 Download
ConvMLP-M 21.1M 38.6 Download
ConvMLP-L 46.3M 40.0 Download

Transfer

Dataset Model Top-1 Accuracy # Params
CIFAR-10 ConvMLP-S 98.0% 8.51M
ConvMLP-M 98.6% 16.90M
ConvMLP-L 98.6% 41.97M
CIFAR-100 ConvMLP-S 87.4% 8.56M
ConvMLP-M 89.1% 16.95M
ConvMLP-L 88.6% 42.04M
Flowers-102 ConvMLP-S 99.5% 8.56M
ConvMLP-M 99.5% 16.95M
ConvMLP-L 99.5% 42.04M

Citation

@article{li2021convmlp,
      title={ConvMLP: Hierarchical Convolutional MLPs for Vision}, 
      author={Jiachen Li and Ali Hassani and Steven Walton and Humphrey Shi},
      year={2021},
      eprint={2109.04454},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
SHI Lab
Research in Synergetic & Holistic Intelligence, with current focus on Computer Vision, Machine Learning, and AI Systems & Applications
SHI Lab
DeepConsensus uses gap-aware sequence transformers to correct errors in Pacific Biosciences (PacBio) Circular Consensus Sequencing (CCS) data.

DeepConsensus DeepConsensus uses gap-aware sequence transformers to correct errors in Pacific Biosciences (PacBio) Circular Consensus Sequencing (CCS)

Google 149 Dec 19, 2022
Official repository for "Intriguing Properties of Vision Transformers" (2021)

Intriguing Properties of Vision Transformers Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, & Ming-Hsuan Yang P

Muzammal Naseer 155 Dec 27, 2022
Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [CVPR 2021]

Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [BCNet, CVPR 2021] This is the official pytorch implementation of BCNet built on

Lei Ke 434 Dec 01, 2022
TAug :: Time Series Data Augmentation using Deep Generative Models

TAug :: Time Series Data Augmentation using Deep Generative Models Note!!! The package is under development so be careful for using in production! Fea

35 Dec 06, 2022
Next-gen Rowhammer fuzzer that uses non-uniform, frequency-based patterns.

Blacksmith Rowhammer Fuzzer This repository provides the code accompanying the paper Blacksmith: Scalable Rowhammering in the Frequency Domain that is

Computer Security Group @ ETH Zurich 173 Nov 16, 2022
Reimplementation of NeurIPS'19: "Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting" by Shu et al.

[Re] Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting Reimplementation of NeurIPS'19: "Meta-Weight-Net: Learning an Explicit Mapping

Robert Cedergren 1 Mar 13, 2020
Animate molecular orbital transitions using Psi4 and Blender

Molecular Orbital Transitions (MOT) Animate molecular orbital transitions using Psi4 and Blender Author: Maximilian Paradiz Dominguez, University of A

3 Feb 01, 2022
This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Prediction Graph Neural Network Model for Bike Sharing Systems".

cluster-link-prediction This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Predict

Bárbara 0 Dec 28, 2022
A light and fast one class detection framework for edge devices. We provide face detector, head detector, pedestrian detector, vehicle detector......

A Light and Fast Face Detector for Edge Devices Big News: LFD, which is a big update of LFFD, now is released (2021.03.09). It is strongly recommended

YonghaoHe 1.3k Dec 25, 2022
Optimus: the first large-scale pre-trained VAE language model

Optimus: the first pre-trained Big VAE language model This repository contains source code necessary to reproduce the results presented in the EMNLP 2

314 Dec 19, 2022
[ ICCV 2021 Oral ] Our method can estimate camera poses and neural radiance fields jointly when the cameras are initialized at random poses in complex scenarios (outside-in scenes, even with less texture or intense noise )

GNeRF This repository contains official code for the ICCV 2021 paper: GNeRF: GAN-based Neural Radiance Field without Posed Camera. This implementation

Quan Meng 191 Dec 26, 2022
Context Axial Reverse Attention Network for Small Medical Objects Segmentation

CaraNet: Context Axial Reverse Attention Network for Small Medical Objects Segmentation This repository contains the implementation of a novel attenti

401 Dec 23, 2022
Attention-based CNN-LSTM and XGBoost hybrid model for stock prediction

Attention-based CNN-LSTM and XGBoost hybrid model for stock prediction Requirements The code has been tested running under Python 3.7.4, with the foll

zshicode 84 Jan 01, 2023
Fully Convolutional DenseNets for semantic segmentation.

Introduction This repo contains the code to train and evaluate FC-DenseNets as described in The One Hundred Layers Tiramisu: Fully Convolutional Dense

485 Nov 26, 2022
Real-time Neural Representation Fusion for Robust Volumetric Mapping

NeuralBlox: Real-Time Neural Representation Fusion for Robust Volumetric Mapping Paper | Supplementary This repository contains the implementation of

ETHZ ASL 106 Dec 24, 2022
Fashion Recommender System With Python

Fashion-Recommender-System Thr growing e-commerce industry presents us with a la

Omkar Gawade 2 Feb 02, 2022
Jiminy Cricket Environment (NeurIPS 2021)

Jiminy Cricket This is the repository for "What Would Jiminy Cricket Do? Towards Agents That Behave Morally" by Dan Hendrycks*, Mantas Mazeika*, Andy

Dan Hendrycks 15 Aug 29, 2022
Anomaly detection in multi-agent trajectories: Code for training, evaluation and the OpenAI highway simulation.

Anomaly Detection in Multi-Agent Trajectories for Automated Driving This is the official project page including the paper, code, simulation, baseline

12 Dec 02, 2022
Identifying Stroke Indicators Using Rough Sets

Identifying Stroke Indicators Using Rough Sets With the spirit of reproducible research, this repository contains all the codes required to produce th

Muhammad Salman Pathan 0 Jun 09, 2022
中文语音识别系列,读者可以借助它快速训练属于自己的中文语音识别模型,或直接使用预训练模型测试效果。

MASR中文语音识别(pytorch版) 开箱即用 自行训练 使用与训练分离(增量训练) 识别率高 说明:因为每个人电脑机器不同,而且有些安装包安装起来比较麻烦,强烈建议直接用我编译好的docker环境跑 目前docker基础环境为ubuntu-cuda10.1-cudnn7-pytorch1.6.

发送小信号 180 Dec 17, 2022