Get started with Machine Learning with Python - An introduction with Python programming examples

Overview

Machine Learning With Python

Get started with Machine Learning with Python

An engaging introduction to Machine Learning with Python

TL;DR

  • Download all Jupyter Notebooks from repo (zip-file-download).
  • Unzip download (main.zip) appropriate place.
  • Launch Ananconda and start JuPyter Notebook (Install it from here if needed)
  • Open the first Notebook from download.
  • Start watching the first video lesson (YouTube).

Machine Learning (ML)

Goal of Course

  • Learn the advantages of ML
  • Master a broad variety of ML techniques
  • Solve problems with ML
  • 15 projects with ML covering:
    • k-Nearest-Neighbors Classifier
    • Linear Classifier
    • Support Vector Classification
    • Linear Regression
    • Reinforcement Learning
    • Unsupervised Learning
    • Neural Networks
    • Deep Neural Networks (DNN)
    • Convolutional Neural Networks (CNN)
    • PyTorch classifier
    • Recurrent Neural Networks (RNN)
    • Natural Language Processing
    • Text Categorization
    • Information Retrieval
    • Information Extraction

Course Structure

  • The course puts you on an exciting journey with Machine Learning (ML) using Python.
    • It will start you off with simple ML concepts to understand and build on top of that
    • Taking you from simple classifier problems towards Deep Neural Networks and complex information extractions
  • The course is structured in 15 sessions, where each session is composed of the following elements
    • Lesson introducing new concepts and building on concepts from previous Lessons
    • Project to try out the new concepts
    • YouTube video explaining and demonstrating the concepts
      • A walkthrough of concepts in Lesson with demonstrating coding examples
      • An introduction of the Project
      • A solution of the project

Are You Good Enough?

Worried about whether you have what it takes to complete this course?

  • Do you have the necessary programming skills?
  • Mathematics and statistics?
  • Are you smart enough?

What level of Python is needed?

What about mathematics and statistics?

  • Fortunately, when it comes to the complex math and statistics behind the Machine Learning models, you do not need to understand that part.
  • All you need is to know how they work and can be used.
    • It's like driving a car. You do not have to be a car mechanic to drive it - yes, it helps you understand the basic knowledge of an engine and what the engine does.
    • Using Machine Learning models is like driving a car - you can get from A to B without being a car mechanic.

Still worried?

  • A lot of people consider me a smart guy - well, the truth is, I'm not
    • I just spend the hours learning it - I have no special talent
  • In the end, it all depends on whether you are willing to spend the hours
  • Yes, you can focus your efforts and succeed faster
    • How?
    • Well, structure it with focus and work on it consistently.
    • Structure your learning - many people try to do it all at once and fail - stay focused on one thing and learn well.
    • Yes, structure is the key to your success.

Any questions?

  • I try to answer most questions. Feel free to contact me.
Owner
Learn Python with Rune
Learn Python with Rune
Large-Scale Unsupervised Object Discovery

Large-Scale Unsupervised Object Discovery Huy V. Vo, Elena Sizikova, Cordelia Schmid, Patrick Pérez, Jean Ponce [PDF] We propose a novel ranking-based

17 Sep 19, 2022
Implementation of SegNet: A Deep Convolutional Encoder-Decoder Architecture for Semantic Pixel-Wise Labelling

Caffe SegNet This is a modified version of Caffe which supports the SegNet architecture As described in SegNet: A Deep Convolutional Encoder-Decoder A

Alex Kendall 1.1k Jan 02, 2023
Stroke-predictions-ml-model - Machine learning model to predict individuals chances of having a stroke

stroke-predictions-ml-model machine learning model to predict individuals chance

Alex Volchek 1 Jan 03, 2022
Human-Pose-and-Motion History

Human Pose and Motion Scientist Approach Eadweard Muybridge, The Galloping Horse Portfolio, 1887 Etienne-Jules Marey, Descent of Inclined Plane, Chron

Daito Manabe 47 Dec 16, 2022
The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track.

ISC21-Descriptor-Track-1st The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track. You can check our solution

lyakaap 73 Dec 24, 2022
Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have undergone breast cancer surgery.

Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have underg

Nafis Ahmed 1 Dec 28, 2021
Machine learning evaluation metrics, implemented in Python, R, Haskell, and MATLAB / Octave

Note: the current releases of this toolbox are a beta release, to test working with Haskell's, Python's, and R's code repositories. Metrics provides i

Ben Hamner 1.6k Dec 26, 2022
Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics.

Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics. By Andres Milioto @ University of Bonn. (for the new P

Photogrammetry & Robotics Bonn 314 Dec 30, 2022
Pytorch implementation of Hinton's Dynamic Routing Between Capsules

pytorch-capsule A Pytorch implementation of Hinton's "Dynamic Routing Between Capsules". https://arxiv.org/pdf/1710.09829.pdf Thanks to @naturomics fo

Tim Omernick 625 Oct 27, 2022
Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.

Deep Image Search - AI-Based Image Search Engine Deep Image Search is an AI-based image search engine that includes deep transfer learning features Ex

139 Jan 01, 2023
Fast Style Transfer in TensorFlow

Fast Style Transfer in TensorFlow Add styles from famous paintings to any photo in a fraction of a second! You can even style videos! It takes 100ms o

Jefferson 5 Oct 24, 2021
Dictionary Learning with Uniform Sparse Representations for Anomaly Detection

Dictionary Learning with Uniform Sparse Representations for Anomaly Detection Implementation of the Uniform DL Representation for AD algorithm describ

Paul Irofti 1 Nov 23, 2022
ByteTrack超详细教程!训练自己的数据集&&摄像头实时检测跟踪

ByteTrack超详细教程!训练自己的数据集&&摄像头实时检测跟踪

Double-zh 45 Dec 19, 2022
Official implementation of Deep Convolutional Dictionary Learning for Image Denoising.

DCDicL for Image Denoising Hongyi Zheng*, Hongwei Yong*, Lei Zhang, "Deep Convolutional Dictionary Learning for Image Denoising," in CVPR 2021. (* Equ

Z80 91 Dec 21, 2022
This repository focus on Image Captioning & Video Captioning & Seq-to-Seq Learning & NLP

Awesome-Visual-Captioning Table of Contents ACL-2021 CVPR-2021 AAAI-2021 ACMMM-2020 NeurIPS-2020 ECCV-2020 CVPR-2020 ACL-2020 AAAI-2020 ACL-2019 NeurI

Ziqi Zhang 362 Jan 03, 2023
Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data"

Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data" You can download the pretrained

Bountos Nikos 3 May 07, 2022
A tensorflow=1.13 implementation of Deconvolutional Networks on Graph Data (NeurIPS 2021)

GDN A tensorflow=1.13 implementation of Deconvolutional Networks on Graph Data (NeurIPS 2021) Abstract In this paper, we consider an inverse problem i

4 Sep 13, 2022
Code and data for "Broaden the Vision: Geo-Diverse Visual Commonsense Reasoning" (EMNLP 2021).

GD-VCR Code for Broaden the Vision: Geo-Diverse Visual Commonsense Reasoning (EMNLP 2021). Research Questions and Aims: How well can a model perform o

Da Yin 24 Oct 13, 2022
Official code for the paper "Self-Supervised Prototypical Transfer Learning for Few-Shot Classification"

Self-Supervised Prototypical Transfer Learning for Few-Shot Classification This repository contains the reference source code and pre-trained models (

EPFL INDY 44 Nov 04, 2022
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 19 Nov 05, 2022