NExT-QA: Next Phase of Question-Answering to Explaining Temporal Actions (CVPR2021)

Overview

NExT-QA

We reproduce some SOTA VideoQA methods to provide benchmark results for our NExT-QA dataset accepted to CVPR2021 (with 1 'Strong Accept' and 2 'Weak Accept's).

NExT-QA is a VideoQA benchmark targeting the explanation of video contents. It challenges QA models to reason about the causal and temporal actions and understand the rich object interactions in daily activities. We set up both multi-choice and open-ended QA tasks on the dataset. This repo. provides resources for multi-choice QA; open-ended QA is found in NExT-OE. For more details, please refer to our dataset page.

Environment

Anaconda 4.8.4, python 3.6.8, pytorch 1.6 and cuda 10.2. For other libs, please refer to the file requirements.txt.

Install

Please create an env for this project using anaconda (should install anaconda first)

>conda create -n videoqa python=3.6.8
>conda activate videoqa
>git clone https://github.com/doc-doc/NExT-QA.git
>pip install -r requirements.txt #may take some time to install

Data Preparation

Please download the pre-computed features and QA annotations from here. There are 4 zip files:

  • ['vid_feat.zip']: Appearance and motion feature for video representation. (With code provided by HCRN).
  • ['qas_bert.zip']: Finetuned BERT feature for QA-pair representation. (Based on pytorch-pretrained-BERT).
  • ['nextqa.zip']: Annotations of QAs and GloVe Embeddings.
  • ['models.zip']: Learned HGA model.

After downloading the data, please create a folder ['data/feats'] at the same directory as ['NExT-QA'], then unzip the video and QA features into it. You will have directories like ['data/feats/vid_feat/', 'data/feats/qas_bert/' and 'NExT-QA/'] in your workspace. Please unzip the files in ['nextqa.zip'] into ['NExT-QA/dataset/nextqa'] and ['models.zip'] into ['NExT-QA/models/'].

(You are also encouraged to design your own pre-computed video features. In that case, please download the raw videos from VidOR. As NExT-QA's videos are sourced from VidOR, you can easily link the QA annotations with the corresponding videos according to the key 'video' in the ['nextqa/.csv'] files, during which you may need the map file ['nextqa/map_vid_vidorID.json']).

Usage

Once the data is ready, you can easily run the code. First, to test the environment and code, we provide the prediction and model of the SOTA approach (i.e., HGA) on NExT-QA. You can get the results reported in the paper by running:

>python eval_mc.py

The command above will load the prediction file under ['results/'] and evaluate it. You can also obtain the prediction by running:

>./main.sh 0 val #Test the model with GPU id 0

The command above will load the model under ['models/'] and generate the prediction file. If you want to train the model, please run

>./main.sh 0 train # Train the model with GPU id 0

It will train the model and save to ['models']. (The results may be slightly different depending on the environments)

Results

Methods Text Rep. Acc_C Acc_T Acc_D Acc Text Rep. Acc_C Acc_T Acc_D Acc
BlindQA GloVe 26.89 30.83 32.60 30.60 BERT-FT 42.62 45.53 43.89 43.76
EVQA GloVe 28.69 31.27 41.44 31.51 BERT-FT 42.64 46.34 45.82 44.24
STVQA [CVPR17] GloVe 36.25 36.29 55.21 39.21 BERT-FT 44.76 49.26 55.86 47.94
CoMem [CVPR18] GloVe 35.10 37.28 50.45 38.19 BERT-FT 45.22 49.07 55.34 48.04
HME [CVPR19] GloVe 37.97 36.91 51.87 39.79 BERT-FT 46.18 48.20 58.30 48.72
HCRN [CVPR20] GloVe 39.09 40.01 49.16 40.95 BERT-FT 45.91 49.26 53.67 48.20
HGA [AAAI20] GloVe 35.71 38.40 55.60 39.67 BERT-FT 46.26 50.74 59.33 49.74
Human - 87.61 88.56 90.40 88.38 - 87.61 88.56 90.40 88.38

Multi-choice QA vs. Open-ended QA

vis mc_oe

Citation

@article{xiao2021next,
  title={NExT-QA: Next Phase of Question-Answering to Explaining Temporal Actions},
  author={Xiao, Junbin and Shang, Xindi and Yao, Angela and Chua, Tat-Seng},
  journal={arXiv preprint arXiv:2105.08276},
  year={2021}
}

Todo

  1. Open evaluation server and release test data.
  2. Release spatial feature.
  3. Release RoI feature.

Acknowledgement

Our reproduction of the methods are based on the respective official repositories, we thank the authors to release their code. If you use the related part, please cite the corresponding paper commented in the code.

Owner
Junbin Xiao
PhD Candidate
Junbin Xiao
Code and project page for ICCV 2021 paper "DisUnknown: Distilling Unknown Factors for Disentanglement Learning"

DisUnknown: Distilling Unknown Factors for Disentanglement Learning See introduction on our project page Requirements PyTorch = 1.8.0 torch.linalg.ei

Sitao Xiang 24 May 16, 2022
Source code for NAACL 2021 paper "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference"

TR-BERT Source code and dataset for "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference". The code is based on huggaface's transformers.

THUNLP 37 Oct 30, 2022
Kernel Point Convolutions

Created by Hugues THOMAS Introduction Update 27/04/2020: New PyTorch implementation available. With SemanticKitti, and Windows supported. This reposit

Hugues THOMAS 584 Jan 07, 2023
Code from Daniel Lemire, A Better Alternative to Piecewise Linear Time Series Segmentation

PiecewiseLinearTimeSeriesApproximation code from Daniel Lemire, A Better Alternative to Piecewise Linear Time Series Segmentation, SIAM Data Mining 20

Daniel Lemire 21 Oct 27, 2022
Static Features Classifier - A static features classifier for Point-Could clusters using an Attention-RNN model

Static Features Classifier This is a static features classifier for Point-Could

ABDALKARIM MOHTASIB 1 Jan 25, 2022
Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge

Winning submission to the 2021 Brain Tumor Segmentation Challenge This repo contains the codes and pretrained weights for the winning submission to th

94 Dec 28, 2022
This is the pytorch implementation for the paper: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation, which is accepted to ICCV2021.

GMPQ: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation This is the pytorch implementation for the paper: Generalizable Mix

18 Sep 02, 2022
constructing maps of intellectual influence from publication data

Influencemap Project @ ANU Influence in the academic communities has been an area of interest for researchers. This can be seen in the popularity of a

CS Metrics 13 Jun 18, 2022
Voice Gender Recognition

In this project it was used some different Machine Learning models to identify the gender of a voice (Female or Male) based on some specific speech and voice attributes.

Anne Livia 1 Jan 27, 2022
Personalized Federated Learning using Pytorch (pFedMe)

Personalized Federated Learning with Moreau Envelopes (NeurIPS 2020) This repository implements all experiments in the paper Personalized Federated Le

Charlie Dinh 226 Dec 30, 2022
An implementation of shampoo

shampoo.pytorch An implementation of shampoo, proposed in Shampoo : Preconditioned Stochastic Tensor Optimization by Vineet Gupta, Tomer Koren and Yor

Ryuichiro Hataya 69 Sep 10, 2022
Official repository for "Action-Based Conversations Dataset: A Corpus for Building More In-Depth Task-Oriented Dialogue Systems"

Action-Based Conversations Dataset (ABCD) This respository contains the code and data for ABCD (Chen et al., 2021) Introduction Whereas existing goal-

ASAPP Research 49 Oct 09, 2022
RARA: Zero-shot Sim2Real Visual Navigation with Following Foreground Cues

RARA: Zero-shot Sim2Real Visual Navigation with Following Foreground Cues FGBG (foreground-background) pytorch package for defining and training model

Klaas Kelchtermans 1 Jun 02, 2022
A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

Davis E. King 11.6k Jan 01, 2023
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Hui Wu 19 Oct 21, 2022
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt) Task Training huge unsupervised deep neural networks yields to strong progress in

2 Aug 05, 2022
Mercury: easily convert Python notebook to web app and share with others

Mercury Share your Python notebooks with others Easily convert your Python notebooks into interactive web apps by adding parameters in YAML. Simply ad

MLJAR 2.2k Dec 27, 2022
Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021, Pytorch)

S2VD Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021) Requirements and Dependencies Ubuntu 16.04, cuda 10.0 Python 3.6.10, P

Zongsheng Yue 53 Nov 23, 2022
Editing a classifier by rewriting its prediction rules

This repository contains the code and data for our paper: Editing a classifier by rewriting its prediction rules Shibani Santurkar*, Dimitris Tsipras*

Madry Lab 86 Dec 27, 2022