CLIP-GEN: Language-Free Training of a Text-to-Image Generator with CLIP

Overview

CLIP-GEN

[简体中文][English]

本项目在萤火二号集群上用 PyTorch 实现了论文 《CLIP-GEN: Language-Free Training of a Text-to-Image Generator with CLIP》。

clip-gen

CLIP-GEN 是一个 Language-Free 的文本生成图像的方法,它不依赖图文训练样本,通过预训练 CLIP 模型的强大表征能力,只需要图片数据就可以训练出一个文本生成图像的模型。该方法的基本原理是:CLIP-GEN 首先会训练一个 VQ-GAN,把图片映射到离散空间;然后再训练一个 GPT 模型,把 CLIP embedding 映射到 VQ-GAN 的离散空间;由于在 CLIP 中,文本和图像共享一个特征空间,在 inference 的时候我们就可以通过同样的方法把文本映射到 VQ-GAN 的离散空间,然后 decode 为 RGB 图像。

Requirements

  • hfai (to be released soon)
  • torch>=1.8

Training

支持的数据集:coco, imagenet, googlecc

  1. 下载 CLIP 预训练模型

    下载 CLIP 后放至 pretrained/clip_vit_b32.pt,该预训练模型来自 OpenAI.

  2. 在 COCO 上训练 VQGAN

    提交任务至萤火集群:

    hfai python train_vqgan.py --ds coco -- -n 1 -p 30

    本地运行:

    python train_vqgan.py --ds coco
  3. 在 COCO 上训练 Conditional GPT

    提交任务至萤火集群:

    hfai python train_gpt.py --ds coco --vqgan_ckpt /path/to/vqgan/ckpt -- -n 4 -p 30

    本地运行:

    python train_gpt.py --ds coco --vqgan_ckpt /path/to/vqgan/ckpt

Demo

下载在 COCO 上训练好的 VQGANGPT 模型,分别放到 pretrained/vqgan_coco.ptpretrained/gpt_coco.pt;然后运行:

python demo.py --text "A city bus driving on the city street" --out "bus.jpg"

NOTE: demo 的运行不依赖 hfai,用户可以在装有 PyTorch 的环境下直接使用

Samples

下面是一些文本生成图像的样本:

tower bus living train skiing

References

Citation

@article{wang2022clip,
  title={CLIP-GEN: Language-Free Training of a Text-to-Image Generator with CLIP},
  author={Wang, Zihao and Liu, Wei and He, Qian and Wu, Xinglong and Yi, Zili},
  journal={arXiv preprint arXiv:2203.00386},
  year={2022}
}

TODO

  • 预训练模型
  • FFRecord 数据
You might also like...
Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized
Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized

VQGAN-CLIP-Docker About Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized This is a stripped and minimal dependency repository for running loca

A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

Text2Art is an AI art generator powered with VQGAN + CLIP and CLIPDrawer models
Text2Art is an AI art generator powered with VQGAN + CLIP and CLIPDrawer models

Text2Art is an AI art generator powered with VQGAN + CLIP and CLIPDrawer models. You can easily generate all kind of art from drawing, painting, sketch, or even a specific artist style just using a text input. You can also specify the dimensions of the image. The process can take 3-20 mins and the results will be emailed to you.

A 1.3B text-to-image generation model trained on 14 million image-text pairs
A 1.3B text-to-image generation model trained on 14 million image-text pairs

minDALL-E on Conceptual Captions minDALL-E, named after minGPT, is a 1.3B text-to-image generation model trained on 14 million image-text pairs for no

A PyTorch Lightning solution to training OpenAI's CLIP from scratch.
A PyTorch Lightning solution to training OpenAI's CLIP from scratch.

train-CLIP 📎 A PyTorch Lightning solution to training CLIP from scratch. Goal ⚽ Our aim is to create an easy to use Lightning implementation of OpenA

[IJCAI-2021] A benchmark of data-free knowledge distillation from paper
[IJCAI-2021] A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation"

DataFree A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation" Authors: Gongfa

Free-duolingo-plus - Duolingo account creator that uses your invite code to get you free duolingo plus
Free-duolingo-plus - Duolingo account creator that uses your invite code to get you free duolingo plus

free-duolingo-plus duolingo account creator that uses your invite code to get yo

Official implementation of SynthTIGER (Synthetic Text Image GEneratoR) ICDAR 2021
Official implementation of SynthTIGER (Synthetic Text Image GEneratoR) ICDAR 2021

🐯 SynthTIGER: Synthetic Text Image GEneratoR Official implementation of SynthTIGER | Paper | Datasets Moonbin Yim1, Yoonsik Kim1, Han-cheol Cho1, Sun

The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding.
The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding.

SuperGen The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding. Requirements Before running, you

Comments
  • "nn.TransformerEncoderLayer" is adopted to construct the "conditonal transformer" in your paper.

    Thanks for your great work.

    I noticed that you utilize "nn.TransformerEncoderLayer" when constructing "conditional transformer". Since it is used to predict the next token index, I am wondering whether the decoder of transformer is more appropriate for the construction of your conditional transformer? or what's the reason that you don't adopt "nn.TransformerdecoderLayer" ?

    Because of the structure of "nn.TransformerEncoderLayer" is simpler or more concise than that of "nn.TransformerDEcoderLayer" ?

    opened by fido20160817 0
  • Add Web Demo & Docker environment

    Add Web Demo & Docker environment

    This pull request makes it possible to run your model inside a Docker environment, which makes it easier for other people to run it. We're using an open source tool called Cog to make this process easier.

    This also means we can make a web page where other people can try out your model, view it here: https://replicate.com/hfailab/clip-gen. You can find the docker file under the tab ‘run model with docker’.

    We have added some examples to the page, but do claim the page so you can own the page, customise the Example gallery as you like, push any future update to the web demo, and we'll feature it on our website and tweet about it too. You can find the 'Claim this model' button on the top of the page. Any member of the HFAiLab organization on GitHub can claim the model ~ When the page is claimed, it will be automatically linked to the arXiv website as well (under “Demos”).

    In case you're wondering who I am, I'm from Replicate, where we're trying to make machine learning reproducible. We got frustrated that we couldn't run all the really interesting ML work being done. So, we're going round implementing models we like. 😊

    opened by chenxwh 0
To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

Larissa Sayuri Futino Castro dos Santos 1 Jan 20, 2022
In Search of Probeable Generalization Measures

In Search of Probeable Generalization Measures Exciting News! In Search of Probeable Generalization Measures has been accepted to the International Co

Mahdi S. Hosseini 6 Sep 11, 2022
Waymo motion prediction challenge 2021: 3rd place solution

Waymo motion prediction challenge 2021: 3rd place solution 📜 Technical report 🗨️ Presentation 🎉 Announcement 🛆Motion Prediction Channel Website 🛆

158 Jan 08, 2023
[NeurIPS 2021] Introspective Distillation for Robust Question Answering

Introspective Distillation (IntroD) This repository is the Pytorch implementation of our paper "Introspective Distillation for Robust Question Answeri

Yulei Niu 13 Jul 26, 2022
PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper.

deep-linear-shapes PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper. If you find this code useful i

Romain Loiseau 27 Sep 24, 2022
🤖 Project template for your next awesome AI project. 🦾

🤖 AI Awesome Project Template 👋 Template author You may want to adjust badge links in a README.md file. 💎 Installation with pip Installation is as

Wiktor Łazarski 18 Nov 23, 2022
RSNA Intracranial Hemorrhage Detection with python

RSNA Intracranial Hemorrhage Detection This is the source code for the first place solution to the RSNA2019 Intracranial Hemorrhage Detection Challeng

24 Nov 30, 2022
Rayvens makes it possible for data scientists to access hundreds of data services within Ray with little effort.

Rayvens augments Ray with events. With Rayvens, Ray applications can subscribe to event streams, process and produce events. Rayvens leverages Apache

CodeFlare 32 Dec 25, 2022
This is an easy python software which allows to sort images with faces by gender and after by age.

Gender-age Classifier This is an easy python software which allows to sort images with faces by gender and after by age. Usage First install Deepface

Claudio Ciccarone 6 Sep 17, 2022
An Agnostic Computer Vision Framework - Pluggable to any Training Library: Fastai, Pytorch-Lightning with more to come

IceVision is the first agnostic computer vision framework to offer a curated collection with hundreds of high-quality pre-trained models from torchvision, MMLabs, and soon Pytorch Image Models. It or

airctic 789 Dec 29, 2022
Direct Multi-view Multi-person 3D Human Pose Estimation

Implementation of NeurIPS-2021 paper: Direct Multi-view Multi-person 3D Human Pose Estimation [paper] [video-YouTube, video-Bilibili] [slides] This is

Sea AI Lab 251 Dec 30, 2022
[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22) Preview version paper of this work is available at: https://arxiv.or

Xiaohao Xu 70 Dec 04, 2022
A simple and lightweight genetic algorithm for optimization of any machine learning model

geneticml This package contains a simple and lightweight genetic algorithm for optimization of any machine learning model. Installation Use pip to ins

Allan Barcelos 8 Aug 10, 2022
Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression

Regression Transformer Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression . Development se

International Business Machines 27 Jan 05, 2023
This is the reference implementation for "Coresets via Bilevel Optimization for Continual Learning and Streaming"

Coresets via Bilevel Optimization This is the reference implementation for "Coresets via Bilevel Optimization for Continual Learning and Streaming" ht

Zalán Borsos 51 Dec 30, 2022
Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders"

AAVAE Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders" Abstract Recent methods for self-supervised learnin

Grid AI Labs 48 Dec 12, 2022
MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity

MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity Introduction The 3D LiDAR place recognition aim

16 Dec 08, 2022
MQBench: Towards Reproducible and Deployable Model Quantization Benchmark

MQBench: Towards Reproducible and Deployable Model Quantization Benchmark We propose a benchmark to evaluate different quantization algorithms on vari

494 Dec 29, 2022
Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

ImageProcessingTransformer Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

61 Jan 01, 2023