PyTorch implementation of "Continual Learning with Deep Generative Replay", NIPS 2017

Overview

pytorch-deep-generative-replay

PyTorch implementation of Continual Learning with Deep Generative Replay, NIPS 2017

model

Results

Continual Learning on Permutated MNISTs

  • Test precisions without replay (left), with exact replay (middle), and with Deep Generative Replay (right).

Continual Learning on MNIST-SVHN

  • Test precisions without replay (left), with exact replay (middle), and with Deep Generative Replay (right).

  • Generated samples from the scholar trained without any replay (left) and with Deep Generative Replay (right).

  • Training scholar's generator without replay (left) and with Deep Generative Replay (right).

Continual Learning on SVHN-MNIST

  • Test precisions without replay (left), with exact replay (middle), and with Deep Generative Replay (right).

  • Generated samples from the scholar trained without replay (left) and with Deep Generative Replay (right).

  • Training scholar's generator without replay (left) and with Deep Generative Replay (right).

Installation

$ git clone https://github.com/kuc2477/pytorch-deep-generative-replay
$ pip install -r pytorch-deep-generative-replay/requirements.txt

Commands

Usage

$ ./main.py --help
$ usage: PyTorch implementation of Deep Generative Replay [-h]
                                                          [--experiment {permutated-mnist,svhn-mnist,mnist-svhn}]
                                                          [--mnist-permutation-number MNIST_PERMUTATION_NUMBER]
                                                          [--mnist-permutation-seed MNIST_PERMUTATION_SEED]
                                                          --replay-mode
                                                          {exact-replay,generative-replay,none}
                                                          [--generator-z-size GENERATOR_Z_SIZE]
                                                          [--generator-c-channel-size GENERATOR_C_CHANNEL_SIZE]
                                                          [--generator-g-channel-size GENERATOR_G_CHANNEL_SIZE]
                                                          [--solver-depth SOLVER_DEPTH]
                                                          [--solver-reducing-layers SOLVER_REDUCING_LAYERS]
                                                          [--solver-channel-size SOLVER_CHANNEL_SIZE]
                                                          [--generator-c-updates-per-g-update GENERATOR_C_UPDATES_PER_G_UPDATE]
                                                          [--generator-iterations GENERATOR_ITERATIONS]
                                                          [--solver-iterations SOLVER_ITERATIONS]
                                                          [--importance-of-new-task IMPORTANCE_OF_NEW_TASK]
                                                          [--lr LR]
                                                          [--weight-decay WEIGHT_DECAY]
                                                          [--batch-size BATCH_SIZE]
                                                          [--test-size TEST_SIZE]
                                                          [--sample-size SAMPLE_SIZE]
                                                          [--image-log-interval IMAGE_LOG_INTERVAL]
                                                          [--eval-log-interval EVAL_LOG_INTERVAL]
                                                          [--loss-log-interval LOSS_LOG_INTERVAL]
                                                          [--checkpoint-dir CHECKPOINT_DIR]
                                                          [--sample-dir SAMPLE_DIR]
                                                          [--no-gpus]
                                                          (--train | --test)

To Run Full Experiments

# Run a visdom server and conduct full experiments
$ python -m visdom.server &
$ ./run_full_experiments

To Run a Single Experiment

# Run a visdom server and conduct a desired experiment
$ python -m visdom.server &
$ ./main.py --train --experiment=[permutated-mnist|svhn-mnist|mnist-svhn] --replay-mode=[exact-replay|generative-replay|none]

To Generate Images from the learned Scholar

$ # Run the command below and visit the "samples" directory
$ ./main.py --test --experiment=[permutated-mnist|svhn-mnist|mnist-svhn] --replay-mode=[exact-replay|generative-replay|none]

Note

  • I failed to find the supplementary materials that the authors mentioned in the paper to contain the experimental details. Thus, I arbitrarily chose a 4-convolutional-layer CNN as a solver in this project. If you know where I can find the additional materials, please let me know through the project's Github issue.

Reference

Author

Ha Junsoo / @kuc2477 / MIT License

Owner
Junsoo Ha
A graduate student @SNUVL
Junsoo Ha
CLIP + VQGAN / PixelDraw

clipit Yet Another VQGAN-CLIP Codebase This started as a fork of @nerdyrodent's VQGAN-CLIP code which was based on the notebooks of @RiversWithWings a

dribnet 276 Dec 12, 2022
DLFlow is a deep learning framework.

DLFlow是一套深度学习pipeline,它结合了Spark的大规模特征处理能力和Tensorflow模型构建能力。利用DLFlow可以快速处理原始特征、训练模型并进行大规模分布式预测,十分适合离线环境下的生产任务。利用DLFlow,用户只需专注于模型开发,而无需关心原始特征处理、pipeline构建、生产部署等工作。

DiDi 152 Oct 27, 2022
SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolutional Networks

SalFBNet This repository includes Pytorch implementation for the following paper: SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolu

12 Aug 12, 2022
Hydra: an Extensible Fuzzing Framework for Finding Semantic Bugs in File Systems

Hydra: An Extensible Fuzzing Framework for Finding Semantic Bugs in File Systems Paper Finding Semantic Bugs in File Systems with an Extensible Fuzzin

gts3.org (<a href=[email protected])"> 129 Dec 15, 2022
Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers

Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers The repository contains the code to reproduce the experimen

Alessandro Berti 4 Aug 24, 2022
Implementation of Kaneko et al.'s MaskCycleGAN-VC model for non-parallel voice conversion.

MaskCycleGAN-VC Unofficial PyTorch implementation of Kaneko et al.'s MaskCycleGAN-VC (2021) for non-parallel voice conversion. MaskCycleGAN-VC is the

86 Dec 25, 2022
Code to reproduce experiments in the paper "Explainability Requires Interactivity".

Explainability Requires Interactivity This repository contains the code to train all custom models used in the paper Explainability Requires Interacti

Digital Health & Machine Learning 5 Apr 07, 2022
PyTorch implementation of Neural Dual Contouring.

NDC PyTorch implementation of Neural Dual Contouring. Citation We are still writing the paper while adding more improvements and applications. If you

Zhiqin Chen 140 Dec 26, 2022
Shared Attention for Multi-label Zero-shot Learning

Shared Attention for Multi-label Zero-shot Learning Overview This repository contains the implementation of Shared Attention for Multi-label Zero-shot

dathuynh 26 Dec 14, 2022
This is the implementation of our work Deep Extreme Cut (DEXTR), for object segmentation from extreme points.

This is the implementation of our work Deep Extreme Cut (DEXTR), for object segmentation from extreme points.

Sergi Caelles 828 Jan 05, 2023
Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations

TopClus The source code used for Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations, published in WWW 2022. Requ

Yu Meng 63 Dec 18, 2022
Change Detection in SAR Images Based on Multiscale Capsule Network

SAR_CD_MS_CapsNet Code for the paper "Change Detection in SAR Images Based on Multiscale Capsule Network" , IEEE Geoscience and Remote Sensing Letters

Feng Gao 21 Nov 29, 2022
Learning Neural Network Subspaces

Learning Neural Network Subspaces Welcome to the codebase for Learning Neural Network Subspaces by Mitchell Wortsman, Maxwell Horton, Carlos Guestrin,

Apple 117 Nov 17, 2022
Generic U-Net Tensorflow implementation for image segmentation

Tensorflow Unet Warning This project is discontinued in favour of a Tensorflow 2 compatible reimplementation of this project found under https://githu

Joel Akeret 1.8k Dec 10, 2022
Pocsploit is a lightweight, flexible and novel open source poc verification framework

Pocsploit is a lightweight, flexible and novel open source poc verification framework

cckuailong 208 Dec 24, 2022
DeepMReye: magnetic resonance-based eye tracking using deep neural networks

DeepMReye: magnetic resonance-based eye tracking using deep neural networks

73 Dec 21, 2022
tmm_fast is a lightweight package to speed up optical planar multilayer thin-film device computation.

tmm_fast tmm_fast or transfer-matrix-method_fast is a lightweight package to speed up optical planar multilayer thin-film device computation. It is es

26 Dec 11, 2022
Implementing yolov4 target detection and tracking based on nao robot

Implementing yolov4 target detection and tracking based on nao robot

6 Apr 19, 2022
Implementation of TimeSformer, a pure attention-based solution for video classification

TimeSformer - Pytorch Implementation of TimeSformer, a pure and simple attention-based solution for reaching SOTA on video classification.

Phil Wang 602 Jan 03, 2023
DI-smartcross - Decision Intelligence Platform for Traffic Crossing Signal Control

DI-smartcross DI-smartcross - Decision Intelligence Platform for Traffic Crossin

OpenDILab 213 Jan 02, 2023