HIVE: Evaluating the Human Interpretability of Visual Explanations

Related tags

Deep LearningHIVE
Overview

HIVE: Evaluating the Human Interpretability of Visual Explanations

Project Page | Paper

This repo provides the code for HIVE, a human evaluation framework for interpretability methods in computer vision.

@article{kim2021hive,
  author = {Sunnie S. Y. Kim and Nicole Meister and Vikram V. Ramaswamy and Ruth Fong and Olga Russakovsky},
  title = {{HIVE}: Evaluating the Human Interpretability of Visual Explanations},
  journal = {CoRR},
  volume = {abs/2112.03184},
  year = {2021}
}

Our study UIs

Distinction task

  • combined_gradcam_nolabels.html
  • combined_bagnet_nolabels.html
  • combined_protopnet_distinction.html
  • combined_prototree_distinction.html

Agreement task

  • combined_protopnet_agreement.html
  • combined_prototree_agreement.html

Additional studies

  • combined_gradcam_labels.html
  • combined_bagnet_labels.html
  • combined_prototree_agreement_tree.html

Running human studies

We ran our studies through Human Intelligence Tasks (HITs) deployed on Amazon Mechanical Turk (AMT). We use simple-amt, a microframework for working with AMT. Here we describe which files correspond to which study UIs and provide brief instructions for running studies.

Brief instructions on how to run user studies on AMT

Please check out the original simple-amt repository for more information on how to run a HIT on AMT.

Launch HITs on AMT

python launch_hits.py \
--html_template=hit_templates/combined_prototree_distinction.html \
--hit_properties_file=hit_properties/properties.json \
--input_json_file=examples/input_prototree_distinction.txt \
--hit_ids_file=examples/hit_ids_prototree_distinction.txt --prod

Check HIT progress

python show_hit_progress.py \
--hit_ids_file=examples/hit_ids_prototree_distinction.txt --prod

Get results

python get_results.py \
  --hit_ids_file=examples/hit_ids_prototree_distinction.txt \
  --output_file=examples/results_prototree_distinction.txt \
  > examples/results_prototree_distinction.txt --prod

Approve work

python approve_hits.py \
--hit_ids_file=examples/hit_ids_prototree_distinction.txt --prod
Owner
Princeton Visual AI Lab
Princeton Visual AI Lab
A project studying the influence of communication in multi-objective normal-form games

Communication in Multi-Objective Normal-Form Games This repo consists of five different types of agents that we have used in our study of communicatio

Willem Röpke 0 Dec 17, 2021
Cross-media Structured Common Space for Multimedia Event Extraction (ACL2020)

Cross-media Structured Common Space for Multimedia Event Extraction Table of Contents Overview Requirements Data Quickstart Citation Overview The code

Manling Li 49 Nov 21, 2022
Namish Khanna 40 Oct 11, 2022
An SMPC companion library for Syft

SyMPC A library that extends PySyft with SMPC support SyMPC /ˈsɪmpəθi/ is a library which extends PySyft ≥0.3 with SMPC support. It allows computing o

Arturo Marquez Flores 0 Oct 13, 2021
Converts geometry node attributes to built-in attributes

Attribute Converter Simplifies converting attributes created by geometry nodes to built-in attributes like UVs or vertex colors, as a single click ope

Ivan Notaros 12 Dec 22, 2022
Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution

Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution Figure: Example visualization of the method and baseline as a

Oliver Hahn 16 Dec 23, 2022
Satellite labelling tool for manual labelling of storm top features such as overshooting tops, above-anvil plumes, cold U/Vs, rings etc.

Satellite labelling tool About this app A tool for manual labelling of storm top features such as overshooting tops, above-anvil plumes, cold U/Vs, ri

Czech Hydrometeorological Institute - Satellite Department 10 Sep 14, 2022
PyTorch implementation of Advantage async actor-critic Algorithms (A3C) in PyTorch

Advantage async actor-critic Algorithms (A3C) in PyTorch @inproceedings{mnih2016asynchronous, title={Asynchronous methods for deep reinforcement lea

LEI TAI 111 Dec 08, 2022
Modified fork of Xuebin Qin's U-2-Net Repository. Used for demonstration purposes.

U^2-Net (U square net) Modified version of U2Net used for demonstation purposes. Paper: U^2-Net: Going Deeper with Nested U-Structure for Salient Obje

Shreyas Bhat Kera 13 Aug 28, 2022
Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs

Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs In this work, we propose an algorithm DP-SCAFFOLD(-warm), whic

19 Nov 10, 2022
Omniscient Video Super-Resolution

Omniscient Video Super-Resolution This is the official code of OVSR (Omniscient Video Super-Resolution, ICCV 2021). This work is based on PFNL. Datase

36 Oct 27, 2022
Learning Synthetic Environments and Reward Networks for Reinforcement Learning

Learning Synthetic Environments and Reward Networks for Reinforcement Learning We explore meta-learning agent-agnostic neural Synthetic Environments (

AutoML-Freiburg-Hannover 16 Sep 02, 2022
docTR by Mindee (Document Text Recognition) - a seamless, high-performing & accessible library for OCR-related tasks powered by Deep Learning.

docTR by Mindee (Document Text Recognition) - a seamless, high-performing & accessible library for OCR-related tasks powered by Deep Learning.

Mindee 1.5k Jan 01, 2023
MicroNet: Improving Image Recognition with Extremely Low FLOPs (ICCV 2021)

MicroNet: Improving Image Recognition with Extremely Low FLOPs (ICCV 2021) A pytorch implementation of MicroNet. If you use this code in your research

Yunsheng Li 293 Dec 28, 2022
Bayesian Optimization Library for Medical Image Segmentation.

bayesmedaug: Bayesian Optimization Library for Medical Image Segmentation. bayesmedaug optimizes your data augmentation hyperparameters for medical im

Şafak Bilici 7 Feb 10, 2022
CSD: Consistency-based Semi-supervised learning for object Detection

CSD: Consistency-based Semi-supervised learning for object Detection (NeurIPS 2019) By Jisoo Jeong, Seungeui Lee, Jee-soo Kim, Nojun Kwak Installation

80 Dec 15, 2022
Code for the paper: Sketch Your Own GAN

Sketch Your Own GAN Project | Paper | Youtube Our method takes in one or a few hand-drawn sketches and customizes an off-the-shelf GAN to match the in

677 Dec 28, 2022
Find the Heart simple Python Game

This is a simple Python game for finding a heart emoji. There is a 3 x 3 matrix in which a heart emoji resides. The location of the heart is randomized and is not revealed. The player must guess the

p.katekomol 1 Jan 24, 2022
Boston House Prediction Valuation Tool

Boston-House-Prediction-Valuation-Tool From Below Anlaysis The Valuation Tool is Designed Correlation Matrix Regrssion Analysis Between Target Vs Pred

0 Sep 09, 2022
Free-duolingo-plus - Duolingo account creator that uses your invite code to get you free duolingo plus

free-duolingo-plus duolingo account creator that uses your invite code to get yo

1 Jan 06, 2022