Implementation of the paper "Shapley Explanation Networks"

Overview

Shapley Explanation Networks

Implementation of the paper "Shapley Explanation Networks" at ICLR 2021. Note that this repo heavily uses the experimental feature of named tensors in PyTorch. As it was really confusing to implement the ideas for the authors, we find it tremendously easier to use this feature.

Dependencies

For running only ShapNets, one would mostly only need PyTorch, NumPy, and SciPy.

Usage

For a Shapley Module:

import torch
import torch.nn as nn
from ShapNet.utils import ModuleDimensions
from ShapNet import ShapleyModule

b_size = 3
features = 4
out = 1
dims = ModuleDimensions(
    features=features,
    in_channel=1,
    out_channel=out
)

sm = ShapleyModule(
    inner_function=nn.Linear(features, out),
    dimensions=dims
)
sm(torch.randn(b_size, features), explain=True)

For a Shallow ShapNet

import torch
import torch.nn as nn
from ShapNet.utils import ModuleDimensions
from ShapNet import ShapleyModule, OverlappingShallowShapleyNetwork

batch_size = 32
class_num = 10
dim = 32

overlapping_modules = [
    ShapleyModule(
        inner_function=nn.Sequential(nn.Linear(2, class_num)),
        dimensions=ModuleDimensions(
            features=2, in_channel=1, out_channel=class_num
        ),
    ) for _ in range(dim * (dim - 1) // 2)
]
shallow_shapnet = OverlappingShallowShapleyNetwork(
    list_modules=overlapping_modules
)
inputs = torch.randn(batch_size, dim, ), )
shallow_shapnet(torch.randn(batch_size, dim, ), )
output, bias = shallow_shapnet(inputs, explain=True, )

For a Deep ShapNet

import torch
import torch.nn as nn
from ShapNet.utils import ModuleDimensions
from ShapNet import ShapleyModule, ShallowShapleyNetwork, DeepShapleyNetwork

dim = 32
dim_input_channels = 1
class_num = 10
inputs = torch.randn(32, dim, ), )


dims = ModuleDimensions(
    features=dim,
    in_channel=dim_input_channels,
    out_channel=class_num
)
deep_shapnet = DeepShapleyNetwork(
    list_shapnets=[
        ShallowShapleyNetwork(
            module_dict=nn.ModuleDict({
                "(0, 2)": ShapleyModule(
                    inner_function=nn.Linear(2, class_num),
                    dimensions=ModuleDimensions(
                        features=2, in_channel=1, out_channel=class_num
                    )
                )},
            ),
            dimensions=ModuleDimensions(dim, 1, class_num)
        ),
    ],
)
deep_shapnet(inputs)
outputs = deep_shapnet(inputs, explain=True, )

For a vision model:

import numpy as np
import torch
import torch.nn as nn

# =============================================================================
# Imports {\sc ShapNet}
# =============================================================================
from ShapNet import DeepConvShapNet, ShallowConvShapleyNetwork, ShapleyModule
from ShapNet.utils import ModuleDimensions, NAME_HEIGHT, NAME_WIDTH, \
    process_list_sizes

num_channels = 3
num_classes = 10
height = 32
width = 32
list_channels = [3, 16, 10]
pruning = [0.2, 0.]
kernel_sizes = process_list_sizes([2, (1, 3), ])
dilations = process_list_sizes([1, 2])
paddings = process_list_sizes([0, 0])
strides = process_list_sizes([1, 1])

args = {
    "list_shapnets": [
        ShallowConvShapleyNetwork(
            shapley_module=ShapleyModule(
                inner_function=nn.Sequential(
                    nn.Linear(
                        np.prod(kernel_sizes[i]) * list_channels[i],
                        list_channels[i + 1]),
                    nn.LeakyReLU()
                ),
                dimensions=ModuleDimensions(
                    features=int(np.prod(kernel_sizes[i])),
                    in_channel=list_channels[i],
                    out_channel=list_channels[i + 1])
            ),
            reference_values=None,
            kernel_size=kernel_sizes[i],
            dilation=dilations[i],
            padding=paddings[i],
            stride=strides[i]
        ) for i in range(len(list_channels) - 1)
    ],
    "reference_values": None,
    "residual": False,
    "named_output": False,
    "pruning": pruning
}

dcs = DeepConvShapNet(**args)

Citation

If this is useful, you could cite our work as

@inproceedings{
wang2021shapley,
title={Shapley Explanation Networks},
author={Rui Wang and Xiaoqian Wang and David I. Inouye},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=vsU0efpivw}
}
Owner
Prof. David I. Inouye's research lab at Purdue University.
COCO Style Dataset Generator GUI

A simple GUI-based COCO-style JSON Polygon masks' annotation tool to facilitate quick and efficient crowd-sourced generation of annotation masks and bounding boxes. Optionally, one could choose to us

Hans Krupakar 142 Dec 09, 2022
A Pytree Module system for Deep Learning in JAX

Treex A Pytree-based Module system for Deep Learning in JAX Intuitive: Modules are simple Python objects that respect Object-Oriented semantics and sh

Cristian Garcia 216 Dec 20, 2022
TANL: Structured Prediction as Translation between Augmented Natural Languages

TANL: Structured Prediction as Translation between Augmented Natural Languages Code for the paper "Structured Prediction as Translation between Augmen

98 Dec 15, 2022
Paper list of log-based anomaly detection

Paper list of log-based anomaly detection

Weibin Meng 411 Dec 05, 2022
Code for Blind Image Decomposition (BID) and Blind Image Decomposition network (BIDeN).

arXiv, porject page, paper Blind Image Decomposition (BID) Blind Image Decomposition is a novel task. The task requires separating a superimposed imag

64 Dec 20, 2022
A DCGAN to generate anime faces using custom mined dataset

Anime-Face-GAN-Keras A DCGAN to generate anime faces using custom dataset in Keras. Dataset The dataset is created by crawling anime database websites

Pavitrakumar P 190 Jan 03, 2023
Unofficial PyTorch Implementation of "Augmenting Convolutional networks with attention-based aggregation"

Pytorch Implementation of Augmenting Convolutional networks with attention-based aggregation This is the unofficial PyTorch Implementation of "Augment

DK 20 Sep 09, 2022
NeRViS: Neural Re-rendering for Full-frame Video Stabilization

Neural Re-rendering for Full-frame Video Stabilization

Yu-Lun Liu 9 Jun 17, 2022
A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis

A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis Project Page | Paper A Shading-Guided Generative Implicit Model

Xingang Pan 115 Dec 18, 2022
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Dec 28, 2022
Generating synthetic mobility data for a realistic population with RNNs to improve utility and privacy

lbs-data Motivation Location data is collected from the public by private firms via mobile devices. Can this data also be used to serve the public goo

Alex 11 Sep 22, 2022
Data augmentation for NLP, accepted at EMNLP 2021 Findings

AEDA: An Easier Data Augmentation Technique for Text Classification This is the code for the EMNLP 2021 paper AEDA: An Easier Data Augmentation Techni

Akbar Karimi 81 Dec 09, 2022
Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021)

Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021, official Pytorch implementatio

Microsoft 247 Dec 25, 2022
Commonsense Ability Tests

CATS Commonsense Ability Tests Dataset and script for paper Evaluating Commonsense in Pre-trained Language Models Use making_sense.py to run the exper

XUHUI ZHOU 28 Oct 19, 2022
A data annotation pipeline to generate high-quality, large-scale speech datasets with machine pre-labeling and fully manual auditing.

About This repository provides data and code for the paper: Scalable Data Annotation Pipeline for High-Quality Large Speech Datasets Development (subm

Appen Repos 86 Dec 07, 2022
Code for the paper "Can Active Learning Preemptively Mitigate Fairness Issues?" presented at RAI 2021.

Can Active Learning Preemptively Mitigate Fairness Issues? Code for the paper "Can Active Learning Preemptively Mitigate Fairness Issues?" presented a

ElementAI 7 Aug 12, 2022
Code for paper "Multi-level Disentanglement Graph Neural Network"

Multi-level Disentanglement Graph Neural Network (MD-GNN) This is a PyTorch implementation of the MD-GNN, and the code includes the following modules:

Lirong Wu 6 Dec 29, 2022
Re-implement CycleGAN in Tensorlayer

CycleGAN_Tensorlayer Re-implement CycleGAN in TensorLayer Original CycleGAN Improved CycleGAN with resize-convolution Prerequisites: TensorLayer Tenso

89 Aug 15, 2022
A little software to generate and save Julia or Mandelbrot's Fractals.

Julia-Mandelbrot-s-Fractals A little software to generate and save Julia or Mandelbrot's Fractals. Dependencies : Python 3.7 or more. (Also possible t

Olivier 0 Jul 09, 2022
Implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

SinGAN This is an unofficial implementation of SinGAN from someone who's been sitting right next to SinGAN's creator for almost five years. Please ref

35 Nov 10, 2022