Graph Convolutional Neural Networks with Data-driven Graph Filter (GCNN-DDGF)

Related tags

Deep LearningGCGRNN
Overview

Graph Convolutional Gated Recurrent Neural Network (GCGRNN)

Improved from Graph Convolutional Neural Networks with Data-driven Graph Filter (GCNN-DDGF)

This repository includes GCGRNN and GCNN-DDGF work for the following challenges:

  • Network-wide Station-level Bike-Sharing Demand Prediction
  • Network-wide Traffic Speed Prediction
  • Network-wide Traffic Volume Prediction

Bike-Sharing Demand Prediction (GCNN-DDGF)

The Bike-sharing demand dataset includes over 28 million bike-sharing transactions between 07/01/2013 and 06/30/2016, which are downloaded from Citi BSS in New York City. The data is processed as follows:

  • For each station, 26304 hourly bike demands are aggregrated based on the bike check-out time and start station in trasaction records;

  • New stations were being set up from 2013 to 2016. Only stations existing in all three years are included;

  • Stations with total three-year demand of less than 26304 (less than one bike per hour) are excluded.

After preprocessing, 272 stations are considered in this study. The 272 by 26304 matrix is saved as NYCBikeHourly272.pickle. The Lat/Lon coordinates of 272 stations are saved in citi_bike_station_locations.csv.

Network-wide Traffic Speed Prediction (GCGRNN)

We are using the traffic speed data from Los Angeles (metr-la.h5) provided in the following paper:

The current best performance is 3.19 (Mean Absolute Error) for a 12-step prediction. The comparison of our GCNN-DDGF and DCRNN is shown as follows:

Network-wide hourly Traffic Volume Prediction (GCGRNN)

We download a real-world network-wide hourly traffic volume dataset from the PeMS system District 7 (01/01/2018-06/30/2019). The dataset (sensor_volume_150.csv) includes 150 sensors, each sensor has 13,104 hourly traffic volumes. The dowloading and preprocessing can be found here.

The whole dataset is split into training, validation, and testing datset according to a rate of 0.7, 0.1, and 0.2. The comparison of GCGRNN and a few benchmark models including DCRNN for a 12-step prediction is also shown as below:

We also compare the spatial prediction performance of GCGRNN and DCRNN:

Network-wide 15-minute Traffic Volume Prediction (GCGRNN)

We download a real-world network-wide 15-minute traffic volume dataset from the PeMS system District 7 (01/01/2019-06/30/2019). The dataset (sensor_volume_150_15min.csv) includes 150 sensors, each sensor has 17,376 15-minute traffic volumes.

The performance of GCGRNN and a few benchmark models for this dataset is also shown as below:

Training Time Comparison

We find that GCNN-DDGF can be trained much faster than DCRNN at a single GTX 1080 Ti machine. The training configuration files can be found here.

Citation

You are more than welcome to cite our paper:

@article{lin2018predicting,
  title={Predicting station-level hourly demand in a large-scale bike-sharing network: A graph convolutional neural network approach},
  author={Lin, Lei and He, Zhengbing and Peeta, Srinivas},
  journal={Transportation Research Part C: Emerging Technologies},
  volume={97},
  pages={258--276},
  year={2018},
  publisher={Elsevier}
}

Owner
Lei Lin
Senior Data Scientist
Lei Lin
Its a Plant Leaf Disease Detection System based on Machine Learning.

My_Project_Code Its a Plant Leaf Disease Detection System based on Machine Learning. I have used Tomato Leaves Dataset from kaggle. This system detect

Sanskriti Sidola 3 Jun 15, 2022
Single Image Deraining Using Bilateral Recurrent Network (TIP 2020)

Single Image Deraining Using Bilateral Recurrent Network Introduction Single image deraining has received considerable progress based on deep convolut

23 Aug 10, 2022
The AugNet Python module contains functions for the fast computation of image similarity.

AugNet AugNet: End-to-End Unsupervised Visual Representation Learning with Image Augmentation arxiv link In our work, we propose AugNet, a new deep le

Ming 74 Dec 28, 2022
TART - A PyTorch implementation for Transition Matrix Representation of Trees with Transposed Convolutions

TART This project is a PyTorch implementation for Transition Matrix Representati

Lee Sael 2 Jan 19, 2022
This repository contains the segmentation user interface from the OpenSurfaces project, extracted as a lightweight tool

OpenSurfaces Segmentation UI This repository contains the segmentation user interface from the OpenSurfaces project, extracted as a lightweight tool.

Sean Bell 66 Jul 11, 2022
Author's PyTorch implementation of TD3+BC, a simple variant of TD3 for offline RL

A Minimalist Approach to Offline Reinforcement Learning TD3+BC is a simple approach to offline RL where only two changes are made to TD3: (1) a weight

Scott Fujimoto 193 Dec 23, 2022
[ICCV 2021] Code release for "Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks"

Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks By Yikai Wang, Yi Yang, Fuchun Sun, Anbang Yao. This is the pytorc

Yikai Wang 26 Nov 20, 2022
PolyTrack: Tracking with Bounding Polygons

PolyTrack: Tracking with Bounding Polygons Abstract In this paper, we present a novel method called PolyTrack for fast multi-object tracking and segme

Gaspar Faure 13 Sep 15, 2022
Genetic Programming in Python, with a scikit-learn inspired API

Welcome to gplearn! gplearn implements Genetic Programming in Python, with a scikit-learn inspired and compatible API. While Genetic Programming (GP)

Trevor Stephens 1.3k Jan 03, 2023
Can we learn gradients by Hamiltonian Neural Networks?

Can we learn gradients by Hamiltonian Neural Networks? This project was carried out as part of the Optimization for Machine Learning course (CS-439) a

2 Aug 22, 2022
For auto aligning, cropping, and scaling HR and LR images for training image based neural networks

ImgAlign For auto aligning, cropping, and scaling HR and LR images for training image based neural networks Usage Make sure OpenCV is installed, 'pip

15 Dec 04, 2022
Files for a tutorial to train SegNet for road scenes using the CamVid dataset

SegNet and Bayesian SegNet Tutorial This repository contains all the files for you to complete the 'Getting Started with SegNet' and the 'Bayesian Seg

Alex Kendall 800 Dec 31, 2022
Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks

Adversarially-Robust-Periphery Code + Data from the paper "Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks" by A

Anne Harrington 2 Feb 07, 2022
Face recognition. Redefined.

FaceFinder Use a powerful CNN to identify faces in images! TABLE OF CONTENTS About The Project Built With Getting Started Prerequisites Installation U

BleepLogger 20 Jun 16, 2021
Code for "Multi-Compound Transformer for Accurate Biomedical Image Segmentation"

News The code of MCTrans has been released. if you are interested in contributing to the standardization of the medical image analysis community, plea

97 Jan 05, 2023
A tutorial on DataFrames.jl prepared for JuliaCon2021

JuliaCon2021 DataFrames.jl Tutorial This is a tutorial on DataFrames.jl prepared for JuliaCon2021. A video recording of the tutorial is available here

Bogumił Kamiński 106 Jan 09, 2023
Learning to Prompt for Vision-Language Models.

CoOp Paper: Learning to Prompt for Vision-Language Models Authors: Kaiyang Zhou, Jingkang Yang, Chen Change Loy, Ziwei Liu CoOp (Context Optimization)

Kaiyang 679 Jan 04, 2023
Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have undergone breast cancer surgery.

Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have underg

Nafis Ahmed 1 Dec 28, 2021
Deep Learning to Create StepMania SM FIles

StepCOVNet Running Audio to SM File Generator Currently only produces .txt files. Use SMDataTools to convert .txt to .sm python stepmania_note_generat

Chimezie Iwuanyanwu 8 Jan 08, 2023
Distance-Ratio-Based Formulation for Metric Learning

Distance-Ratio-Based Formulation for Metric Learning Environment Python3 Pytorch (http://pytorch.org/) (version 1.6.0+cu101) json tqdm Preparing datas

Hyeongji Kim 1 Dec 07, 2022