PyTorch implementation for our paper Learning Character-Agnostic Motion for Motion Retargeting in 2D, SIGGRAPH 2019

Overview

Learning Character-Agnostic Motion for Motion Retargeting in 2D

We provide PyTorch implementation for our paper Learning Character-Agnostic Motion for Motion Retargeting in 2D, SIGGRAPH 2019.

Prerequisites

  • Linux
  • CPU or NVIDIA GPU + CUDA CuDNN
  • Python 3
  • PyTorch 0.4

Getting Started

Installation

  • Clone this repo

    git clone https://github.com/ChrisWu1997/2D-Motion-Retargeting.git
    cd 2D-Motion-Retargeting
  • Install dependencies

    pip install -r requirements.txt

    Note that the imageio package requires ffmepg and there are several options to install ffmepg. For those who are using anaconda, run conda install ffmpeg -c conda-forge is the simplest way.

Run demo examples

We provide pretrained models and several video examples, along with their OpenPose outputs. After run, the results (final joint positions + videos) will be saved in the output folder.

  • Run the full model to combine motion, skeleton, view angle from three input videos:

    python predict.py -n full --model_path ./model/pretrained_full.pth -v1 ./examples/tall_man -v2 ./examples/small_man -v3 ./examples/workout_march -h1 720 -w1 720 -h2 720 -w2 720 -h3 720 -w3 720 -o ./outputs/full-demo --max_length 120

    Results will be saved in ./outputs/full-demo:

  • Run the full model to do interpolation between two input videos. For example, to keep body attribute unchanged, and interpolate in motion and view axis:

    python interpolate.py --model_path ./model/pretrained_full.pth -v1 ./examples/model -v2 ./examples/tall_man -h1 720 -w1 720 -h2 720 -w2 720 -o ./outputs/interpolate-demo.mp4 --keep_attr body --form matrix --nr_sample 5 --max_length 120

    You will get a matrix of videos that demonstrates the interpolation results:

  • Run two encoder model to transfer motion and skeleton between two input videos:

    python predict.py -n skeleton --model_path ./model/pretrained_skeleton.pth -v1 ./examples/tall_man -v2 ./examples/small_man -h1 720 -w1 720 -h2 720 -w2 720 -o ./outputs/skeleton-demo --max_length 120
  • Run two encoder model to transfer motion and view angle between two input videos:

    python predict.py -n view --model_path ./model/pretrained_view.pth -v1 ./examples/tall_man -v2 ./examples/model -h1 720 -w1 720 -h2 720 -w2 720 -o ./outputs/view-demo --max_length 120

Use your own videos

To run our models with your own videos, you first need to use OpenPose to extract the 2D joint positions from the video, then use the resulting JSON files as described in the demo examples.

Train from scratch

Prepare Data

  • Download Mixamo Data

    For the sake of convenience, we pack the Mixamo Data that we use. To download it, see Google Drive or Baidu Drive (8jq3). After downloading, extract it into ./mixamo_data.

    NOTE: Our Mixamo dataset only covers a part of the whole collections provided by the Mixamo website. If you want to collect Mixamo Data by yourself, you can follow the our guide here. The downloaded files are of fbx format, to convert it into json/npy (joints 3d position), you can use our script dataset/fbx2joints3d.py(requires blender 2.79).

  • Preprocess the downloaded data

    python ./dataset/preprocess.py
    

Train

  • Train the full model (with three encoders) on GPU:

    python train.py -n full -g 0
    

    Further more, you can select which structure to train and which loss to use through command line arguments:

    -n : Which structure to train. 'skeleton' / 'view' for 2 encoders system to transfer skeleton/view. 'full' for full system with 3 encoders.

    —disable_triplet: To disable triplet loss. By default, triplet loss is used.

    —use_footvel_loss: To use foot velocity loss.

Citation

If you use this code for your research, please cite our paper:

@article{aberman2019learning,
  author = {Aberman, Kfir and Wu, Rundi and Lischinski, Dani and Chen, Baoquan and Cohen-Or, Daniel},
  title = {Learning Character-Agnostic Motion for Motion Retargeting in 2D},
  journal = {ACM Transactions on Graphics (TOG)},
  volume = {38},
  number = {4},
  pages = {75},
  year = {2019},
  publisher = {ACM}
}

Owner
Rundi Wu
PhD student at Columbia University
Rundi Wu
Joint parameterization and fitting of stroke clusters

StrokeStrip: Joint Parameterization and Fitting of Stroke Clusters Dave Pagurek van Mossel1, Chenxi Liu1, Nicholas Vining1,2, Mikhail Bessmeltsev3, Al

Dave Pagurek 44 Dec 01, 2022
A Python toolbox to create adversarial examples that fool neural networks in PyTorch, TensorFlow, and JAX

Foolbox Native: Fast adversarial attacks to benchmark the robustness of machine learning models in PyTorch, TensorFlow, and JAX Foolbox is a Python li

Bethge Lab 2.4k Dec 25, 2022
You Only 👀 One Sequence

You Only 👀 One Sequence TL;DR: We study the transferability of the vanilla ViT pre-trained on mid-sized ImageNet-1k to the more challenging COCO obje

Hust Visual Learning Team 666 Jan 03, 2023
Implementation for the paper 'YOLO-ReT: Towards High Accuracy Real-time Object Detection on Edge GPUs'

YOLO-ReT This is the original implementation of the paper: YOLO-ReT: Towards High Accuracy Real-time Object Detection on Edge GPUs. Prakhar Ganesh, Ya

69 Oct 19, 2022
Calculates carbon footprint based on fuel mix and discharge profile at the utility selected. Can create graphs and tabular output for fuel mix based on input file of series of power drawn over a period of time.

carbon-footprint-calculator Conda distribution ~/anaconda3/bin/conda install anaconda-client conda-build ~/anaconda3/bin/conda config --set anaconda_u

Seattle university Renewable energy research 7 Sep 26, 2022
Instant neural graphics primitives: lightning fast NeRF and more

Instant Neural Graphics Primitives Ever wanted to train a NeRF model of a fox in under 5 seconds? Or fly around a scene captured from photos of a fact

NVIDIA Research Projects 10.6k Jan 01, 2023
Library for time-series-forecasting-as-a-service.

TIMEX TIMEX (referred in code as timexseries) is a framework for time-series-forecasting-as-a-service. Its main goal is to provide a simple and generi

Alessandro Falcetta 8 Jan 06, 2023
计算机视觉中用到的注意力模块和其他即插即用模块PyTorch Implementation Collection of Attention Module and Plug&Play Module

PyTorch实现多种计算机视觉中网络设计中用到的Attention机制,还收集了一些即插即用模块。由于能力有限精力有限,可能很多模块并没有包括进来,有任何的建议或者改进,可以提交issue或者进行PR。

PJDong 599 Dec 23, 2022
AlgoVision - A Framework for Differentiable Algorithms and Algorithmic Supervision

NeurIPS 2021 Paper "Learning with Algorithmic Supervision via Continuous Relaxations"

Felix Petersen 76 Jan 01, 2023
A program that uses computer vision to detect hand gestures, used for controlling movie players.

HandGestureDetection This program uses a Haar Cascade algorithm to detect the presence of your hand, and then passes it on to a self-created and self-

2 Nov 22, 2022
Oriented Object Detection: Oriented RepPoints + Swin Transformer/ReResNet

Oriented RepPoints for Aerial Object Detection The code for the implementation of “Oriented RepPoints + Swin Transformer/ReResNet”. Introduction Based

96 Dec 13, 2022
Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging"

Deep Optics for Single-shot High-dynamic-range Imaging Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging" CVPR, 2

Stanford Computational Imaging Lab 40 Dec 12, 2022
Benchmarks for Model-Based Optimization

Design-Bench Design-Bench is a benchmarking framework for solving automatic design problems that involve choosing an input that maximizes a black-box

Brandon Trabucco 43 Dec 20, 2022
Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences

Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences This repository is an official PyTorch implementation of Neighbor

DIVE Lab, Texas A&M University 8 Jun 12, 2022
RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds

RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds This repository contains the code asscoiated

Felix Hensel 14 Dec 12, 2022
From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement (CVPR'2020)

Under-exposure introduces a series of visual degradation, i.e. decreased visibility, intensive noise, and biased color, etc. To address these problems, we propose a novel semi-supervised learning app

Yang Wenhan 117 Jan 03, 2023
This is a pytorch implementation for the BST model from Alibaba https://arxiv.org/pdf/1905.06874.pdf

Behavior-Sequence-Transformer-Pytorch This is a pytorch implementation for the BST model from Alibaba https://arxiv.org/pdf/1905.06874.pdf This model

Jaime Ferrando Huertas 83 Jan 05, 2023
RGB-stacking 🛑 🟩 🔷 for robotic manipulation

RGB-stacking 🛑 🟩 🔷 for robotic manipulation BLOG | PAPER | VIDEO Beyond Pick-and-Place: Tackling Robotic Stacking of Diverse Shapes, Alex X. Lee*,

DeepMind 95 Dec 23, 2022
Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic

Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [Paper] [Colab is coming soon] Approach Example Usage To r

170 Jan 03, 2023
Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments [Project website] [Paper] This project is a PyTorch

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 49 Nov 28, 2022