PyTorch implementation for our paper Learning Character-Agnostic Motion for Motion Retargeting in 2D, SIGGRAPH 2019

Overview

Learning Character-Agnostic Motion for Motion Retargeting in 2D

We provide PyTorch implementation for our paper Learning Character-Agnostic Motion for Motion Retargeting in 2D, SIGGRAPH 2019.

Prerequisites

  • Linux
  • CPU or NVIDIA GPU + CUDA CuDNN
  • Python 3
  • PyTorch 0.4

Getting Started

Installation

  • Clone this repo

    git clone https://github.com/ChrisWu1997/2D-Motion-Retargeting.git
    cd 2D-Motion-Retargeting
  • Install dependencies

    pip install -r requirements.txt

    Note that the imageio package requires ffmepg and there are several options to install ffmepg. For those who are using anaconda, run conda install ffmpeg -c conda-forge is the simplest way.

Run demo examples

We provide pretrained models and several video examples, along with their OpenPose outputs. After run, the results (final joint positions + videos) will be saved in the output folder.

  • Run the full model to combine motion, skeleton, view angle from three input videos:

    python predict.py -n full --model_path ./model/pretrained_full.pth -v1 ./examples/tall_man -v2 ./examples/small_man -v3 ./examples/workout_march -h1 720 -w1 720 -h2 720 -w2 720 -h3 720 -w3 720 -o ./outputs/full-demo --max_length 120

    Results will be saved in ./outputs/full-demo:

  • Run the full model to do interpolation between two input videos. For example, to keep body attribute unchanged, and interpolate in motion and view axis:

    python interpolate.py --model_path ./model/pretrained_full.pth -v1 ./examples/model -v2 ./examples/tall_man -h1 720 -w1 720 -h2 720 -w2 720 -o ./outputs/interpolate-demo.mp4 --keep_attr body --form matrix --nr_sample 5 --max_length 120

    You will get a matrix of videos that demonstrates the interpolation results:

  • Run two encoder model to transfer motion and skeleton between two input videos:

    python predict.py -n skeleton --model_path ./model/pretrained_skeleton.pth -v1 ./examples/tall_man -v2 ./examples/small_man -h1 720 -w1 720 -h2 720 -w2 720 -o ./outputs/skeleton-demo --max_length 120
  • Run two encoder model to transfer motion and view angle between two input videos:

    python predict.py -n view --model_path ./model/pretrained_view.pth -v1 ./examples/tall_man -v2 ./examples/model -h1 720 -w1 720 -h2 720 -w2 720 -o ./outputs/view-demo --max_length 120

Use your own videos

To run our models with your own videos, you first need to use OpenPose to extract the 2D joint positions from the video, then use the resulting JSON files as described in the demo examples.

Train from scratch

Prepare Data

  • Download Mixamo Data

    For the sake of convenience, we pack the Mixamo Data that we use. To download it, see Google Drive or Baidu Drive (8jq3). After downloading, extract it into ./mixamo_data.

    NOTE: Our Mixamo dataset only covers a part of the whole collections provided by the Mixamo website. If you want to collect Mixamo Data by yourself, you can follow the our guide here. The downloaded files are of fbx format, to convert it into json/npy (joints 3d position), you can use our script dataset/fbx2joints3d.py(requires blender 2.79).

  • Preprocess the downloaded data

    python ./dataset/preprocess.py
    

Train

  • Train the full model (with three encoders) on GPU:

    python train.py -n full -g 0
    

    Further more, you can select which structure to train and which loss to use through command line arguments:

    -n : Which structure to train. 'skeleton' / 'view' for 2 encoders system to transfer skeleton/view. 'full' for full system with 3 encoders.

    —disable_triplet: To disable triplet loss. By default, triplet loss is used.

    —use_footvel_loss: To use foot velocity loss.

Citation

If you use this code for your research, please cite our paper:

@article{aberman2019learning,
  author = {Aberman, Kfir and Wu, Rundi and Lischinski, Dani and Chen, Baoquan and Cohen-Or, Daniel},
  title = {Learning Character-Agnostic Motion for Motion Retargeting in 2D},
  journal = {ACM Transactions on Graphics (TOG)},
  volume = {38},
  number = {4},
  pages = {75},
  year = {2019},
  publisher = {ACM}
}

Owner
Rundi Wu
PhD student at Columbia University
Rundi Wu
PartImageNet is a large, high-quality dataset with part segmentation annotations

PartImageNet: A Large, High-Quality Dataset of Parts We will release our dataset and scripts soon after cleaning and approval. Introduction PartImageN

Ju He 77 Nov 30, 2022
Converts geometry node attributes to built-in attributes

Attribute Converter Simplifies converting attributes created by geometry nodes to built-in attributes like UVs or vertex colors, as a single click ope

Ivan Notaros 12 Dec 22, 2022
This repository contains the code for the paper "Hierarchical Motion Understanding via Motion Programs"

Hierarchical Motion Understanding via Motion Programs (CVPR 2021) This repository contains the official implementation of: Hierarchical Motion Underst

Sumith Kulal 40 Dec 05, 2022
Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN

Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN Introduction Image super-resolution (SR) is the process of recovering high-resoluti

8 Apr 15, 2022
A convolutional recurrent neural network for classifying A/B phases in EEG signals recorded for sleep analysis.

CAP-Classification-CRNN A deep learning model based on Inception modules paired with gated recurrent units (GRU) for the classification of CAP phases

Apurva R. Umredkar 2 Nov 25, 2022
Official Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER 🦌 🦒 Official Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEE

33 Dec 23, 2022
Leveraging OpenAI's Codex to solve cornerstone problems in Music

Music-Codex Leveraging OpenAI's Codex to solve cornerstone problems in Music Please NOTE: Presented generated samples were created by OpenAI's Codex P

Alex 2 Mar 11, 2022
MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity

MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity Introduction The 3D LiDAR place recognition aim

16 Dec 08, 2022
Codes for AAAI22 paper "Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum"

Paper For more details, please see our paper Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum which has been accepted a

14 Sep 30, 2022
Using VapourSynth with super resolution models and speeding them up with TensorRT.

VSGAN-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Using NVIDIA/Torch-TensorRT combined wi

111 Jan 05, 2023
PyTorch Implementation of "Non-Autoregressive Neural Machine Translation"

Non-Autoregressive Transformer Code release for Non-Autoregressive Neural Machine Translation by Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K.

Salesforce 261 Nov 12, 2022
A way to store images in YAML.

YAMLImg A way to store images in YAML. I made this after seeing Roadcrosser's JSON-G because it was too inspiring to ignore this opportunity. Installa

5 Mar 14, 2022
Code for CVPR2019 paper《Unequal Training for Deep Face Recognition with Long Tailed Noisy Data》

Unequal-Training-for-Deep-Face-Recognition-with-Long-Tailed-Noisy-Data. This is the code of CVPR 2019 paper《Unequal Training for Deep Face Recognition

Zhong Yaoyao 68 Jan 07, 2023
Fbone (Flask bone) is a Flask (Python microframework) starter/template/bootstrap/boilerplate application.

Fbone (Flask bone) is a Flask (Python microframework) starter/template/bootstrap/boilerplate application.

Wilson 1.7k Dec 30, 2022
Bling's Object detection tool

BriVL for Building Applications This repo is used for illustrating how to build applications by using BriVL model. This repo is re-implemented from fo

chuhaojin 47 Nov 01, 2022
[ICCV 2021 Oral] Just Ask: Learning to Answer Questions from Millions of Narrated Videos

Just Ask: Learning to Answer Questions from Millions of Narrated Videos Webpage • Demo • Paper This repository provides the code for our paper, includ

Antoine Yang 87 Jan 05, 2023
A flag generation AI created using DeepAIs API

Vex AI or Vexiology AI is an Artifical Intelligence created to generate custom made flag design texts. It uses DeepAIs API. Please be aware that you must include your own DeepAI API key. See instruct

Bernie 10 Apr 06, 2022
TraSw for FairMOT - A Single-Target Attack example (Attack ID: 19; Screener ID: 24):

TraSw for FairMOT A Single-Target Attack example (Attack ID: 19; Screener ID: 24): Fig.1 Original Fig.2 Attacked By perturbing only two frames in this

Derry Lin 21 Dec 21, 2022
Official Implementation of 'UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers' ICLR 2021(spotlight)

UPDeT Official Implementation of UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers (ICLR 2021 spotlight) The

hhhusiyi 96 Dec 22, 2022
Implementation for paper MLP-Mixer: An all-MLP Architecture for Vision

MLP Mixer Implementation for paper MLP-Mixer: An all-MLP Architecture for Vision. Give us a star if you like this repo. Author: Github: bangoc123 Emai

Ngoc Nguyen Ba 86 Dec 10, 2022