[CVPR 2022 Oral] Versatile Multi-Modal Pre-Training for Human-Centric Perception

Overview

Versatile Multi-Modal Pre-Training for
Human-Centric Perception

Fangzhou Hong1  Liang Pan1  Zhongang Cai1,2,3Ziwei Liu1*
1S-Lab, Nanyang Technological University  2SenseTime Research  3Shanghai AI Laboratory

Accepted to CVPR 2022 (Oral)

This repository contains the official implementation of Versatile Multi-Modal Pre-Training for Human-Centric Perception. For brevity, we name our method HCMoCo.


arXivProject PageDataset

Citation

If you find our work useful for your research, please consider citing the paper:

@article{hong2022hcmoco,
  title={Versatile Multi-Modal Pre-Training for Human-Centric Perception},
  author={Hong, Fangzhou and Pan, Liang and Cai, Zhongang and Liu, Ziwei},
  journal={arXiv preprint arXiv:2203.13815},
  year={2022}
}

Updates

[03/2022] Code release!

[03/2022] HCMoCo is accepted to CVPR 2022 for Oral presentation 🥳 !

Installation

We recommend using conda to manage the python environment. The commands below are provided for your reference.

git clone [email protected]:hongfz16/HCMoCo.git
cd HCMoCo
conda create -n HCMoCo python=3.6
conda activate HCMoCo
conda install -c pytorch pytorch=1.6.0 torchvision=0.7.0 cudatoolkit=10.1
pip install -r requirements.txt

Other than the above steps, if you want to run the PointNet++ experiments, please remember to compile the pointnet operators.

cd pycontrast/networks/pointnet2
python setup.py install

Dataset Preparation

1. NTU RGB-D Dataset

This dataset is for the pre-train process. Download the 'NTU RGB+D 60' dataset here. Extract the data to pycontrast/data/NTURGBD/NTURGBD. The folder structure should look like:

./
├── ...
└── pycontrast/data/NTURGBD/
    ├──NTURGBD/
        ├── nturgb+d_rgb/
        ├── nturgb+d_depth_masked/
        ├── nturgb+d_skeletons/
        └── ...

Preprocess the raw data using the following two python scripts which could produce calibrated RGB frames in nturgb+d_rgb_warped_correction and extracted skeleton information in nturgb+d_parsed_skeleton.

cd pycontrast/data/NTURGBD
python generate_skeleton_data.py
python preprocess_nturgbd.py

2. NTURGBD-Parsing-4K Dataset

This dataset is for both the pre-train process and depth human parsing task. Follow the instructions here for the preparation of NTURGBD-Parsing-4K dataset.

3. MPII Human Pose Dataset

This dataset is for the pre-train process. Download the 'MPII Human Pose Dataset' here. Extract them to pycontrast/data/mpii. The folder structure should look like:

./
├── ...
└── pycontrast/data/mpii
    ├── annot/
    └── images/

4. COCO Keypoint Detection Dataset

This dataset is for both the pre-train process and DensePose estimation. Download the COCO 2014 train/val images/annotations here. Extract them to pycontrast/data/coco. The folder structure should look like:

./
├── ...
└── pycontrast/data/coco
    ├── annotations/
        └── *.json
    └── images/
        ├── train2014/
            └── *.jpg
        └── val2014/
            └── *.jpg

5. Human3.6M Dataset

This dataset is for the RGB human parsing task. Download the Human3.6M dataset here and extract under HRNet-Semantic-Segmentation/data/human3.6m. Use the provided script mp_parsedata.py for the pre-processing of the raw data. The folder structure should look like:

./
├── ...
└── HRNet-Semantic-Segmentation/data/human3.6m
    ├── protocol_1/
        ├── rgb
        └── seg
    ├── flist_2hz_train.txt
    ├── flist_2hz_eval.txt
    └── ...

6. ITOP Dataset

This dataset is for the depth 3D pose estimation. Download the ITOP dataset here and extract under A2J/data. Use the provided script data_preprocess.py for the pre-processing of the raw data. The folder structure should look like:

./
├── ...
└── A2J/data
    ├── side_train/
    ├── side_test/
    ├── itop_size_mean.npy
    ├── itop_size_std.npy
    ├── bounding_box_depth_train.pkl
    ├── itop_side_bndbox_test.mat
    └── ...

Model Zoo

TBA

HCMoCo Pre-train

Finally, let's start the pre-training process. We use slurm to manage the distributed training. You might need to modify the below mentioned scripts according to your own distributed training method. We develop HCMoCo based on the CMC repository. The codes for this part are provided under pycontrast.

1. First Stage

For the first stage, we only perform 'Sample-level modality-invariant representation learning' for 100 epoch. We provide training scripts for this stage under pycontrast/scripts/FirstStage. Specifically, we provide the scripts for training with 'NTURGBD+MPII': train_ntumpiirgbd2s_hrnet_w18.sh and 'NTURGBD+COCO': train_ntucocorgbd2s_hrnet_w18.sh.

cd pycontrast
sh scripts/FirstStage/train_ntumpiirgbd2s_hrnet_w18.sh

2. Second Stage

For the second stage, all three proposed learning targets in HCMoCo are used to continue training for another 100 epoch. We provide training scripts for this stage under pycontrast/scripts/SecondStage. The naming of scripts are corresponding to that of the first stage.

3. Extract pre-trained weights

After the two-stage pre-training, we need to extract pre-trained weights of RGB/depth encoders for transfering to downstream tasks. Specifically, please refer to pycontrast/transfer_ckpt.py for extracting pre-trained weights of the RGB encoder and pycontrast/transfer_ckpt_depth.py for that of the depth encoder.

Evaluation on Downstream Tasks

1. DensePose Estimation

The DensePose estimation is performed on COCO dataset. Please refer to detectron2 for the training and evaluation of DensePose estimation. We provide our config files under DensePose-Config for your reference. Fill the config option MODEL.WEIGHTS with the path to the pre-trained weights.

2. RGB Human Parsing

The RGB human parsing is performed on Human3.6M dataset. We develop the RGB human parsing task based on the HRNet-Semantic-Segmentation repository and include the our version in this repository. We provide a config template HRNet-Semantic-Segmentation/experiments/human36m/config-template.yaml. Remember to fill the config option MODEL.PRETRAINED with the path to the pre-trained weights. The training and evaluation commands are provided below.

cd HRNet-Semantic-Segmentation
# Training
python -m torch.distributed.launch \
  --nproc_per_node=2 \
  --master_port=${port} \
  tools/train.py \
      --cfg ${config_file}
# Evaluation
python tools/test.py \
    --cfg ${config_file} \
    TEST.MODEL_FILE ${path_to_trained_model}/best.pth \
    TEST.FLIP_TEST True \
    TEST.NUM_SAMPLES 0

3. Depth Human Parsing

The depth human parsing is performed on our proposed NTURGBD-Parsing-4K dataset. Similarly, the code for depth human parsing is developed based on the HRNet-Semantic-Segmentation repository. We provide a config template HRNet-Semantic-Segmentation/experiments/nturgbd_d/config-template.yaml. Please refer to the above 'RGB Human Parsing' section for detailed usages.

4. Depth 3D Pose Estimation

The depth 3D pose estimation is evaluated on ITOP dataset. We develop the codes based on the A2J repository. Since the original repository does not provide the training codes, we implemented it by ourselves. The training and evaluation commands are provided below.

cd A2J
python main.py \
    --pretrained_pth ${path_to_pretrained_weights} \
    --output ${path_to_the_output_folder}

Experiments on the Versatility of HCMoCo

1. Cross-Modality Supervision

The experiments for the versatility of HCMoCo are evaluated on NTURGBD-Parsing-4K datasets. For the 'RGB->Depth' cross-modality supervision, please refer to pycontrast/scripts/Versatility/train_ntusegrgbd2s_hrnet_w18_sup_rgb_cmc1_other1.sh. For the 'Depth->RGB' cross-modality supervision, please refer to pycontrast/scripts/Versatility/train_ntusegrgbd2s_hrnet_w18_sup_d_cmc1_other1.sh.

cd pycontrast
sh scripts/Versatility/train_ntusegrgbd2s_hrnet_w18_sup_rgb_cmc1_other1.sh
sh scripts/Versatility/train_ntusegrgbd2s_hrnet_w18_sup_d_cmc1_other1.sh

2. Missing-Modality Inference

Please refer to the provided script pycontrast/scripts/Versatility/train_ntusegrgbd2s_hrnet_w18_sup_rgbd_cmc1_other1.sh

cd pycontrast
sh scripts/Versatility/train_ntusegrgbd2s_hrnet_w18_sup_rgbd_cmc1_other1.sh

License

Distributed under the MIT License. See LICENSE for more information.

Acknowledgements

This work is supported by NTU NAP, MOE AcRF Tier 2 (T2EP20221-0033), and under the RIE2020 Industry Alignment Fund – Industry Collaboration Projects (IAF-ICP) Funding Initiative, as well as cash and in-kind contribution from the industry partner(s).

We thank the following repositories for their contributions in our implementation: CMC, HRNet-Semantic-Segmentation, SemGCN, PointNet2.PyTorch, and A2J.

Owner
Fangzhou Hong
Ph.D. Student in [email protected]
Fangzhou Hong
PyTorch implementation of the WarpedGANSpace: Finding non-linear RBF paths in GAN latent space (ICCV 2021)

Authors official PyTorch implementation of the "WarpedGANSpace: Finding non-linear RBF paths in GAN latent space" [ICCV 2021].

Christos Tzelepis 100 Dec 06, 2022
Neural Fixed-Point Acceleration for Convex Optimization

Licensing The majority of neural-scs is licensed under the CC BY-NC 4.0 License, however, portions of the project are available under separate license

Facebook Research 27 Oct 06, 2022
Organseg dags - The repository contains the codebase for multi-organ segmentation with directed acyclic graphs (DAGs) in CT.

Organseg dags - The repository contains the codebase for multi-organ segmentation with directed acyclic graphs (DAGs) in CT.

yzf 1 Jun 12, 2022
PyTorch code of paper "LiVLR: A Lightweight Visual-Linguistic Reasoning Framework for Video Question Answering"

LiVLR-VideoQA We propose a Lightweight Visual-Linguistic Reasoning framework (LiVLR) for VideoQA. The overview of LiVLR: Evaluation on MSRVTT-QA Datas

JJ Jiang 7 Dec 30, 2022
High-resolution networks and Segmentation Transformer for Semantic Segmentation

High-resolution networks and Segmentation Transformer for Semantic Segmentation Branches This is the implementation for HRNet + OCR. The PyTroch 1.1 v

HRNet 2.8k Jan 07, 2023
UDP++ (ECCVW 2020 Oral), (Winner of COCO 2020 Keypoint Challenge).

UDP-Pose This is the pytorch implementation for UDP++, which won the Fisrt place in COCO Keypoint Challenge at ECCV 2020 Workshop. Top-Down Results on

20 Jul 29, 2022
Wordplay, an artificial Intelligence based crossword puzzle solver.

Wordplay, AI based crossword puzzle solver A crossword is a word puzzle that usually takes the form of a square or a rectangular grid of white- and bl

Vaibhaw 4 Nov 16, 2022
Numerai tournament example scripts using NN and optuna

numerai_NN_example Numerai tournament example scripts using pytorch NN, lightGBM and optuna https://numer.ai/tournament Performance of my model based

Takahiro Maeda 12 Oct 10, 2022
Pytorch implementation of One-Shot Affordance Detection

One-shot Affordance Detection PyTorch implementation of our one-shot affordance detection models. This repository contains PyTorch evaluation code, tr

46 Dec 12, 2022
Download files from DSpace systems (because for some reason DSpace won't let you)

DSpaceDL A tool for downloading files from DSpace items. For some reason, DSpace systems have a dogshit UI, and Universities absolutely LOOOVE to use

Soumitra Shewale 5 Dec 01, 2022
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling @ INTERSPEECH 2021 Accepted

NU-Wave — Official PyTorch Implementation NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling Junhyeok Lee, Seungu Han @ MINDsLab Inc

MINDs Lab 242 Dec 23, 2022
Official code repository for the EMNLP 2021 paper

Integrating Visuospatial, Linguistic and Commonsense Structure into Story Visualization PyTorch code for the EMNLP 2021 paper "Integrating Visuospatia

Adyasha Maharana 23 Dec 19, 2022
Revisiting Global Statistics Aggregation for Improving Image Restoration

Revisiting Global Statistics Aggregation for Improving Image Restoration Xiaojie Chu, Liangyu Chen, Chengpeng Chen, Xin Lu Paper: https://arxiv.org/pd

MEGVII Research 128 Dec 24, 2022
Back to Basics: Efficient Network Compression via IMP

Back to Basics: Efficient Network Compression via IMP Authors: Max Zimmer, Christoph Spiegel, Sebastian Pokutta This repository contains the code to r

IOL Lab @ ZIB 1 Nov 19, 2021
HyperCube: Implicit Field Representations of Voxelized 3D Models

HyperCube: Implicit Field Representations of Voxelized 3D Models Authors: Magdalena Proszewska, Marcin Mazur, Tomasz Trzcinski, Przemysław Spurek [Pap

Magdalena Proszewska 3 Mar 09, 2022
Part-Aware Data Augmentation for 3D Object Detection in Point Cloud

Part-Aware Data Augmentation for 3D Object Detection in Point Cloud This repository contains a reference implementation of our Part-Aware Data Augment

Jaeseok Choi 62 Jan 03, 2023
Layered Neural Atlases for Consistent Video Editing

Layered Neural Atlases for Consistent Video Editing Project Page | Paper This repository contains an implementation for the SIGGRAPH Asia 2021 paper L

Yoni Kasten 353 Dec 27, 2022
[CVPR2021] UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicles

UAV-Human Official repository for CVPR2021: UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicle Paper arXiv Res

129 Jan 04, 2023
TCNN Temporal convolutional neural network for real-time speech enhancement in the time domain

TCNN Pandey A, Wang D L. TCNN: Temporal convolutional neural network for real-time speech enhancement in the time domain[C]//ICASSP 2019-2019 IEEE Int

凌逆战 16 Dec 30, 2022
Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation", Haoxiang Wang, Han Zhao, Bo Li.

Bridging Multi-Task Learning and Meta-Learning Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Trainin

AI Secure 57 Dec 15, 2022