Deep Inertial Prediction (DIPr)

Related tags

Deep Learningdipr
Overview

Deep Inertial Prediction

For more information and context related to this repo, please refer to our website.

Getting Started (non Docker)

Note: you will need to have pytorch installed (tested with 1.8 and higher)

python3 -m venv <venv_path>
source <venv_path>/bin/activate

git clone https://github.com/arcturus-industries/dipr.git && cd dipr
pip3 install -e .
python3 dipr/evaluate.py --challenge_folder <data_path>

Getting Started (with Docker)

You will need docker and realpath commands to be installed

git clone https://github.com/arcturus-industries/dipr.git && cd dipr
# on x86_64 systems
./build-and-run.sh <data_path>
# on arm64 systems (like mac M1)
./build-and-run-aarch64.sh <data_path>

M1 Mac note: You can use either the X86_64 container or the arm64 container. If you use the x86_64 container, you may see "Could not initialize NNPACK! Reason: Unsupported hardware." This is only a warning. It will however take a long time to run (about 30 minutes or longer after the docker build finishes)

Package Content

  • dataset.py - sample API to read the challenge hdf5 dataset format
  • cnn_backend.py - a file with CNN inference backends (currenly only TorchScript is supported). If you plan to work on a DL inference framework other than TorchScript, implement it there
  • noise_utils.py - a file with noise calibration and parameters, you may adjust them to generate your own noise levels
  • imu_fallback.py - a sample implmentation of ImuFallback with CNN velocity measurements
  • utils.py - auxiliary tools
  • evaluate.py - sample test script that runs ImuFallback on available datasets and outputs Mean Absolute Velocity metric

Running sample evaluation script

python3 evaluate.py --challenge_folder <data_path>

or for the docker versions

# on x86_64 systems
./build-and-run.sh <data_path>
# on arm64 systems (like mac M1)
./build-and-run-aarch64.sh <data_path>

It will output something like:

python3.9 evaluate.py -df shared
Dataset OpenVR_2021-09-02_17-40-34-synthetic, segments durations [7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0 ] sec
Processing datasets: 100%|██████████| 1/1 [05:04<00:00, 304.92s/files]
all_vel_mae_cnn 2.12cm/s
all_vel_mae_fallback 9.73cm/s
all_pose_mae_fallback 15.51cm

Which mean it found OpenVR_2021-09-02_17-40-34-synthetic test dataset, and executed ImuFallback on 13 segments of duration 7 seconds, and estimated over them averaged Mean Absolute Velocity Error as 9.73cm/s

It also outputs image with tracking plots to <challenge_folder_root>/_results/<datasetname>.png. There are plots for IMU only tracking, ImuFallback + CNN traking and ground truth

Challenge folder Content

train_synthetic - a folder with train datasets, available after sign-up https://dipr.ai/sign-up

test_synthetic - a folder where evaluation script looks for test datasets (we share only one example dataset)

_results - a folder where evaluation script stores some results

pretrained - an example CNN model we ship

Known Issues

Installing dependencies natively on Apple Silicon may fail with the following:

> pip3 install -e .
...
    error: Command "clang -Wno-unused-result -Wsign-compare -Wunreachable-code -fno-common -dynamic -DNDEBUG -g -fwrapv -O3 -Wall -iwithsysroot/System/Library/Frameworks/System.framework/PrivateHeaders -iwithsysroot/Applications/Xcode.app/Contents/Developer/Library/Frameworks/Python3.framework/Versions/3.8/Headers -arch arm64 -arch x86_64 -Werror=implicit-function-declaration -ftrapping-math -DNPY_INTERNAL_BUILD=1 -DHAVE_NPY_CONFIG_H=1 -D_FILE_OFFSET_BITS=64 -D_LARGEFILE_SOURCE=1 -D_LARGEFILE64_SOURCE=1 -DNO_ATLAS_INFO=3 -DHAVE_CBLAS -Ibuild/src.macosx-10.14-x86_64-3.8/numpy/core/src/common -Ibuild/src.macosx-10.14-x86_64-3.8/numpy/core/src/umath -Inumpy/core/include -Ibuild/src.macosx-10.14-x86_64-3.8/numpy/core/include/numpy -Ibuild/src.macosx-10.14-x86_64-3.8/numpy/distutils/include -Inumpy/core/src/common -Inumpy/core/src -Inumpy/core -Inumpy/core/src/npymath -Inumpy/core/src/multiarray -Inumpy/core/src/umath -Inumpy/core/src/npysort -Inumpy/core/src/_simd -I<venv_path>/include -I/Applications/Xcode.app/Contents/Developer/Library/Frameworks/Python3.framework/Versions/3.8/include/python3.8 -Ibuild/src.macosx-10.14-x86_64-3.8/numpy/core/src/common -Ibuild/src.macosx-10.14-x86_64-3.8/numpy/core/src/npymath -c numpy/core/src/multiarray/dragon4.c -o build/temp.macosx-10.14-x86_64-3.8/numpy/core/src/multiarray/dragon4.o -MMD -MF build/temp.macosx-10.14-x86_64-3.8/numpy/core/src/multiarray/dragon4.o.d -msse3 -I/System/Library/Frameworks/vecLib.framework/Headers" failed with exit status 1
    ----------------------------------------
    ERROR: Failed building wheel for numpy

Workaround: use the Docker instructions

License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

CC BY-NC-SA 4.0

Owner
Arcturus Industries
Arcturus Industries
An index of algorithms for learning causality with data

awesome-causality-algorithms An index of algorithms for learning causality with data. Please cite our survey paper if this index is helpful. @article{

Ruocheng Guo 2.3k Jan 08, 2023
A python package to perform same transformation to coco-annotation as performed on the image.

coco-transform-util A python package to perform same transformation to coco-annotation as performed on the image. Installation Way 1 $ git clone https

1 Jan 14, 2022
Tensorflow implementation of "Learning Deep Features for Discriminative Localization"

Weakly_detector Tensorflow implementation of "Learning Deep Features for Discriminative Localization" B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and

Taeksoo Kim 363 Jun 29, 2022
Local Multi-Head Channel Self-Attention for FER2013

LHC-Net Local Multi-Head Channel Self-Attention This repository is intended to provide a quick implementation of the LHC-Net and to replicate the resu

12 Jan 04, 2023
Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020)

Causality In Traffic Accident (Under Construction) Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020) Overview Data Prepa

Tackgeun 21 Nov 20, 2022
On the Analysis of French Phonetic Idiosyncrasies for Accent Recognition

On the Analysis of French Phonetic Idiosyncrasies for Accent Recognition With the spirit of reproducible research, this repository contains codes requ

0 Feb 24, 2022
[CVPR 2021] Anycost GANs for Interactive Image Synthesis and Editing

Anycost GAN video | paper | website Anycost GANs for Interactive Image Synthesis and Editing Ji Lin, Richard Zhang, Frieder Ganz, Song Han, Jun-Yan Zh

MIT HAN Lab 726 Dec 28, 2022
CMT: Convolutional Neural Networks Meet Vision Transformers

CMT: Convolutional Neural Networks Meet Vision Transformers [arxiv] 1. Introduction This repo is the CMT model which impelement with pytorch, no refer

FlyEgle 83 Dec 30, 2022
CURL: Contrastive Unsupervised Representations for Reinforcement Learning

CURL Rainbow Status: Archive (code is provided as-is, no updates expected) This is an implementation of CURL: Contrastive Unsupervised Representations

Aravind Srinivas 46 Dec 12, 2022
From a body shape, infer the anatomic skeleton.

OSSO: Obtaining Skeletal Shape from Outside (CVPR 2022) This repository contains the official implementation of the skeleton inference from: OSSO: Obt

Marilyn Keller 166 Dec 28, 2022
ETMO: Evolutionary Transfer Multiobjective Optimization

ETMO: Evolutionary Transfer Multiobjective Optimization To promote the research on ETMO, benchmark problems are of great importance to ETMO algorithm

Songbai Liu 0 Mar 16, 2021
Machine Learning Model deployment for Container (TensorFlow Serving)

try_tf_serving ├───dataset │ ├───testing │ │ ├───paper │ │ ├───rock │ │ └───scissors │ └───training │ ├───paper │ ├───rock

Azhar Rizki Zulma 5 Jan 07, 2022
A particular navigation route using satellite feed and can help in toll operations & traffic managemen

How about adding some info that can quanitfy the stress on a particular navigation route using satellite feed and can help in toll operations & traffic management The current analysis is on the satel

Ashish Pandey 1 Feb 14, 2022
FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX.

FedJAX: Federated learning with JAX What is FedJAX? FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX. FedJAX priori

Google 208 Dec 14, 2022
A collection of resources, problems, explanations and concepts that are/were important during my Data Science journey

Data Science Gurukul List of resources, interview questions, concepts I use for my Data Science work. Topics: Basics of Programming with Python + Unde

Smaranjit Ghose 10 Oct 25, 2022
AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition

AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition [ArXiv] [Project Page] This repository is the official implementation of AdaMML:

International Business Machines 43 Dec 26, 2022
Official PyTorch implementation of the paper Image-Based CLIP-Guided Essence Transfer.

TargetCLIP- official pytorch implementation of the paper Image-Based CLIP-Guided Essence Transfer This repository finds a global direction in StyleGAN

Hila Chefer 221 Dec 13, 2022
Official code for "Mean Shift for Self-Supervised Learning"

MSF Official code for "Mean Shift for Self-Supervised Learning" Requirements Python = 3.7.6 PyTorch = 1.4 torchvision = 0.5.0 faiss-gpu = 1.6.1 In

UMBC Vision 44 Nov 21, 2022
Few-Shot Graph Learning for Molecular Property Prediction

Few-shot Graph Learning for Molecular Property Prediction Introduction This is the source code and dataset for the following paper: Few-shot Graph Lea

Zhichun Guo 94 Dec 12, 2022
Flexible-Modal Face Anti-Spoofing: A Benchmark

Flexible-Modal FAS This is the official repository of "Flexible-Modal Face Anti-

Zitong Yu 22 Nov 10, 2022