Local Multi-Head Channel Self-Attention for FER2013

Related tags

Deep LearningLHC_Net
Overview

LHC-Net

Local Multi-Head Channel Self-Attention

This repository is intended to provide a quick implementation of the LHC-Net and to replicate the results in this paper on FER2013 by downloading our trained models or, in case of hardware compatibility, by training the models from scratch. A fully custom training routine is also available.

Image of LHC_Net Image of LHC_Module2

How to check the replicability of our results without full training

Bit-exact replicability is strongly hardware dependent. Since the results we presented depend on the choice of a very good performing starting ResNet34v2 model, we strongly recommend to run the replicability script before attempting to execute our training protocol which is computational intensive and time consuming.
Execute the following commands in your terminal:

python Download_Data.py
python ETL.py
python check_rep.py

Ore equivalently:

python main_check_rep.py

If you get the output "Replicable Results!" you will 99% get our exact result, otherwise if you get "Not Replicable Results. Change your GPU!" you won't be able to get our results.

Please note that Download_Data.py will download the FER2013 dataset in .csv format while ETL.py will save all the 28709 images of the training set in .jpeg format in order to allow the use of TensorFlow image data generator and save some memory.

Recommended setup for full replicability:
Nvidia Geforce GTX-1080ti (other Pascal-based GPUs might work)
GPU Driver 457.51
Cuda Driver 11.1.1*
CuDNN v8.0.5 - 11.1
Python 3.8.5
requirements.txt

*After Cuda installation rename C:...\NVIDIA GPU Computing Toolkit\CUDA\v11.1\bin\cusolver64_11.dll in cusolver64_10.dll

How to download our trained models and evaluate their performances on FER2013

Execute the following commands in your terminal:

python Download_Data.py
python Download_Models.py
python LHC_Downloaded_Eval.py
python Controller_Downloaded_Eval.py

Ore equivalently:

python main_downloaded.py

How to train and evaluate your own LHC-Net on FER2013 in the "standalone" mode

To train an LHC-Net using a generically imagenet pre-trained ResNet backbone edit the configuration files in the Settings folder and execute the following commands in your terminal:

python Download_Data.py
python ETL.py
python LHC_Net_Train.py
python LHC_Net_Eval.py

Ore equivalently:

python main_standalone.py

How to train and evalueate LHC-Net on FER2013 in our "modular" mode and replicate our results

If the replicability check gave a positive result you could replicate our results by integrating and training the LHC modules on a ResNet backbone already trained on FER2013, according with our first experimental protocol. To do that execute the following commands in your terminal:

python Download_Data.py
python ETL.py
python ResNet34_Train.py
python LHC_Train.py
python Controller_Train.py
python LHC_Eval.py
python Controller_Eval.py

Ore equivalently:

python main_modular.py
This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Prediction Graph Neural Network Model for Bike Sharing Systems".

cluster-link-prediction This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Predict

Bárbara 0 Dec 28, 2022
Deep Learning pipeline for motor-imagery classification.

BCI-ToolBox 1. Introduction BCI-ToolBox is deep learning pipeline for motor-imagery classification. This repo contains five models: ShallowConvNet, De

DongHee 18 Oct 31, 2022
A Pytree Module system for Deep Learning in JAX

Treex A Pytree-based Module system for Deep Learning in JAX Intuitive: Modules are simple Python objects that respect Object-Oriented semantics and sh

Cristian Garcia 216 Dec 20, 2022
DeOldify - A Deep Learning based project for colorizing and restoring old images (and video!)

DeOldify - A Deep Learning based project for colorizing and restoring old images (and video!)

Jason Antic 15.8k Jan 04, 2023
AbelNN: Deep Learning Python module from scratch

AbelNN: Deep Learning Python module from scratch I have implemented several neural networks from scratch using only Numpy. I have designed the module

Abel 2 Apr 12, 2022
Repo for EchoVPR: Echo State Networks for Visual Place Recognition

EchoVPR Repo for EchoVPR: Echo State Networks for Visual Place Recognition Currently under development Dirs: data: pre-collected hidden representation

Anil Ozdemir 4 Oct 04, 2022
A real world application of a Recurrent Neural Network on a binary classification of time series data

What is this This is a real world application of a Recurrent Neural Network on a binary classification of time series data. This project includes data

Josep Maria Salvia Hornos 2 Jan 30, 2022
Custom studies about block sparse attention.

Block Sparse Attention 研究总结 本人近半年来对Block Sparse Attention(块稀疏注意力)的研究总结(持续更新中)。按时间顺序,主要分为如下三部分: PyTorch 自定义 CUDA 算子——以矩阵乘法为例 基于 Triton 的 Block Sparse A

Chen Kai 2 Jan 09, 2022
MLJetReconstruction - using machine learning to reconstruct jets for CMS

MLJetReconstruction - using machine learning to reconstruct jets for CMS The C++ data extraction code used here was based heavily on that foundv here.

ALPhA Davidson 0 Nov 17, 2021
Object-Centric Learning with Slot Attention

Slot Attention This is a re-implementation of "Object-Centric Learning with Slot Attention" in PyTorch (https://arxiv.org/abs/2006.15055). Requirement

Untitled AI 72 Jan 02, 2023
CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation

CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation [arxiv] This is the official repository for CDTrans: Cross-domain Transformer for

238 Dec 22, 2022
A collection of scripts I developed for personal and working projects.

A collection of scripts I developed for personal and working projects Table of contents Introduction Repository diagram structure List of scripts pyth

Gianluca Bianco 109 Dec 26, 2022
Code for MarioNette: Self-Supervised Sprite Learning, in NeurIPS 2021

MarioNette | Webpage | Paper | Video MarioNette: Self-Supervised Sprite Learning Dmitriy Smirnov, Michaël Gharbi, Matthew Fisher, Vitor Guizilini, Ale

Dima Smirnov 28 Nov 18, 2022
[CVPR 2021] Few-shot 3D Point Cloud Semantic Segmentation

Few-shot 3D Point Cloud Semantic Segmentation Created by Na Zhao from National University of Singapore Introduction This repository contains the PyTor

117 Dec 27, 2022
[ECCV2020] Content-Consistent Matching for Domain Adaptive Semantic Segmentation

[ECCV20] Content-Consistent Matching for Domain Adaptive Semantic Segmentation This is a PyTorch implementation of CCM. News: GTA-4K list is available

Guangrui Li 88 Aug 25, 2022
Compact Bidirectional Transformer for Image Captioning

Compact Bidirectional Transformer for Image Captioning Requirements Python 3.8 Pytorch 1.6 lmdb h5py tensorboardX Prepare Data Please use git clone --

YE Zhou 19 Dec 12, 2022
MINERVA: An out-of-the-box GUI tool for offline deep reinforcement learning

MINERVA is an out-of-the-box GUI tool for offline deep reinforcement learning, designed for everyone including non-programmers to do reinforcement learning as a tool.

Takuma Seno 80 Nov 06, 2022
Code of paper "Compositionally Generalizable 3D Structure Prediction"

Compositionally Generalizable 3D Structure Prediction In this work, We bring in the concept of compositional generalizability and factorizes the 3D sh

Songfang Han 30 Dec 17, 2022
The official project of SimSwap (ACM MM 2020)

SimSwap: An Efficient Framework For High Fidelity Face Swapping Proceedings of the 28th ACM International Conference on Multimedia The official reposi

Six_God 2.6k Jan 08, 2023
SweiNet is an uncertainty-quantifying shear wave speed (SWS) estimator for ultrasound shear wave elasticity (SWE) imaging.

SweiNet SweiNet is an uncertainty-quantifying shear wave speed (SWS) estimator for ultrasound shear wave elasticity (SWE) imaging. SweiNet takes as in

Felix Jin 3 Mar 31, 2022