A Joint Video and Image Encoder for End-to-End Retrieval

Overview

Frozen️ in Time ❄️ ️️️️

A Joint Video and Image Encoder for End-to-End Retrieval

project page | arXiv | webvid-data alt text Repository containing the code, models, data for end-to-end retrieval. WebVid data can be found here


📝 Preparation

  1. Create conda env conda env create -f requirements/frozen.yml

  2. Create data / experiment folders mkdir data; mkdir exps, note this can just be a symlink to where you want to store big data.

🔧 Finetuning (benchmarks: MSR-VTT)

  1. wget https://www.robots.ox.ac.uk/~maxbain/frozen-in-time/data/MSRVTT.zip -P data; unzip data/MSRVTT.zip -d data

  2. Change num_gpus in the config file accordingly.

  3. Train python train.py --config configs/msrvtt_4f_i21k.json

  4. Test python test.py --resume exps/models/{EXP_NAME}/{EXP_TIMESTAMP}/model_best.pth

For finetuning a pretrained model, set "load_checkpoint": "PATH_TO_MODEL" in the config file.

🏋 ️‍️ Pretraining

  1. Download WebVid-2M (see https://github.com/m-bain/webvid)

  2. Download CC-3M (see https://ai.google.com/research/ConceptualCaptions/download)

  3. Train. python train.py --config CONFIG_PATH. Here are the different options:

    a. Dataset combinations

     i. CC-3M + WebVid2M: configs/cc-webvid2m-pt-i2k.json
     ii. WebVid2M : configs/webvid2m-pt-i2k.json
    

    You can add in an arbitrary number of image/video datasets for pre-training by adding as many dataloaders to the config file dataloader list as your heart desires. Adding more datasets will likely to higher downstream performance.

    b. Number of frames

    For image datasets, this should always be set to video_params": {"num_frames": 1, ...}.

    For video datasets, set this to what you want. N.B. More frames requires = more gpu memory.

    If, like us, you are not a big company and have limited compute, then you will benefit by training via a curriculum on the number of frames. A lot of the knowledge can be learned in the 1-frame setting, as we show in the paper. You can then finetune with more frames. See curriculum learning section

    c. Finetuning

    Set "load_checkpoint": "FULL_MODEL_PATH" in the config file. You can now use different experiment params, such as num_frames, to do curriculum learning for example.

🗄 Pretrained Weights

📚 Curriculum Learning on #frames

Curriculum learning on the number of frames in pretraining achieves similar performance with significant reduction in compute (both memory and training time). This is because model has higher throughput for fewer frames, as well as allowing a bigger batch size for the same gpu memory.

Our best model was trained on 1-frame then finetuned on 4-frames on CC+WebVid2M.

Train on 1-frame until the training loss converges, then finetune on 4-frames with the same config, from the 1-frame checkpoint via setting load_checkpoint in config file. 4-frame finetuning needs much less iterations (~10% of 1-frame setting is sufficient) since most of the knowledge is learned in the 1-frame setting.

📈 Experiment Logging and Visualising

This repository uses a sacred backbone for logging and tracking experiments, with a neptune front end. It makes life a lot easier. If you want to activate this:

  1. Create a neptune.ai account.
  2. Create a project, copy in your credentials in train.py and remove the ValueError
  3. Set neptune: true in your config files.

🎓 Cite

If you use this code in your research, please cite:

@misc{bain2021frozen,
      title={Frozen in Time: A Joint Video and Image Encoder for End-to-End Retrieval}, 
      author={Max Bain and Arsha Nagrani and Gül Varol and Andrew Zisserman},
      year={2021},
      eprint={2104.00650},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

🙏 Acknowledgements

This code is based off the pytorch-template https://github.com/victoresque/pytorch-template

As well as many good practices adopted from Samuel Albanie's https://github.com/albanie/collaborative-experts

Owner
PhD Student, VGG, Oxford
A Pytorch Implementation of [Source data‐free domain adaptation of object detector through domain

A Pytorch Implementation of Source data‐free domain adaptation of object detector through domain‐specific perturbation Please follow Faster R-CNN and

1 Dec 25, 2021
Implementation of CVPR'21: RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction

RfD-Net [Project Page] [Paper] [Video] RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction Yinyu Nie, Ji Hou, Xiaoguang Han, Matthi

Yinyu Nie 162 Jan 06, 2023
Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation (RA-L/ICRA 2020)

Aerial Depth Completion This work is described in the letter "Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation", by Lucas

ETHZ V4RL 70 Dec 22, 2022
Computing Shapley values using VAEAC

Shapley values and the VAEAC method In this GitHub repository, we present the implementation of the VAEAC approach from our paper "Using Shapley Value

3 Nov 23, 2022
Saeed Lotfi 28 Dec 12, 2022
Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt

Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt. This is done by

Mehdi Cherti 135 Dec 30, 2022
Hyperopt for solving CIFAR-100 with a convolutional neural network (CNN) built with Keras and TensorFlow, GPU backend

Hyperopt for solving CIFAR-100 with a convolutional neural network (CNN) built with Keras and TensorFlow, GPU backend This project acts as both a tuto

Guillaume Chevalier 103 Jul 22, 2022
Fast and Context-Aware Framework for Space-Time Video Super-Resolution (VCIP 2021)

Fast and Context-Aware Framework for Space-Time Video Super-Resolution Preparation Dependencies PyTorch 1.2.0 CUDA 10.0 DCNv2 cd model/DCNv2 bash make

Xueheng Zhang 1 Mar 29, 2022
PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

Saim Wani 4 May 08, 2022
Record radiologists' eye gaze when they are labeling images.

Record radiologists' eye gaze when they are labeling images. Read for installation, usage, and deep learning examples. Why use MicEye Versatile As a l

24 Nov 03, 2022
f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation

f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation [Paper] [PyTorch] [MXNet] [Video] This repository provides code for training

Visual Understanding Lab @ Samsung AI Center Moscow 516 Dec 21, 2022
[ICCV'21] NEAT: Neural Attention Fields for End-to-End Autonomous Driving

NEAT: Neural Attention Fields for End-to-End Autonomous Driving Paper | Supplementary | Video | Poster | Blog This repository is for the ICCV 2021 pap

254 Jan 02, 2023
A library for building and serving multi-node distributed faiss indices.

About Distributed faiss index service. A lightweight library that lets you work with FAISS indexes which don't fit into a single server memory. It fol

Meta Research 170 Dec 30, 2022
[ICLR'21] FedBN: Federated Learning on Non-IID Features via Local Batch Normalization

FedBN: Federated Learning on Non-IID Features via Local Batch Normalization This is the PyTorch implemention of our paper FedBN: Federated Learning on

<a href=[email protected]"> 156 Dec 15, 2022
Tool which allow you to detect and translate text.

Text detection and recognition This repository contains tool which allow to detect region with text and translate it one by one. Description Two pretr

Damian Panek 176 Nov 28, 2022
Yolov5 deepsort inference,使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中

使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。

813 Dec 31, 2022
Code for Learning to Segment The Tail (LST)

Learning to Segment the Tail [arXiv] In this repository, we release code for Learning to Segment The Tail (LST). The code is directly modified from th

47 Nov 07, 2022
The InterScript dataset contains interactive user feedback on scripts generated by a T5-XXL model.

Interscript The Interscript dataset contains interactive user feedback on a T5-11B model generated scripts. Dataset data.json contains the data in an

AI2 8 Dec 01, 2022
Sound Event Detection with FilterAugment

Sound Event Detection with FilterAugment Official implementation of Heavily Augmented Sound Event Detection utilizing Weak Predictions (DCASE2021 Chal

43 Aug 28, 2022
This repository is maintained for the scientific paper tittled " Study of keyword extraction techniques for Electric Double Layer Capacitor domain using text similarity indexes: An experimental analysis "

kwd-extraction-study This repository is maintained for the scientific paper tittled " Study of keyword extraction techniques for Electric Double Layer

ping 543f 1 Dec 05, 2022