A Joint Video and Image Encoder for End-to-End Retrieval

Overview

Frozen️ in Time ❄️ ️️️️

A Joint Video and Image Encoder for End-to-End Retrieval

project page | arXiv | webvid-data alt text Repository containing the code, models, data for end-to-end retrieval. WebVid data can be found here


📝 Preparation

  1. Create conda env conda env create -f requirements/frozen.yml

  2. Create data / experiment folders mkdir data; mkdir exps, note this can just be a symlink to where you want to store big data.

🔧 Finetuning (benchmarks: MSR-VTT)

  1. wget https://www.robots.ox.ac.uk/~maxbain/frozen-in-time/data/MSRVTT.zip -P data; unzip data/MSRVTT.zip -d data

  2. Change num_gpus in the config file accordingly.

  3. Train python train.py --config configs/msrvtt_4f_i21k.json

  4. Test python test.py --resume exps/models/{EXP_NAME}/{EXP_TIMESTAMP}/model_best.pth

For finetuning a pretrained model, set "load_checkpoint": "PATH_TO_MODEL" in the config file.

🏋 ️‍️ Pretraining

  1. Download WebVid-2M (see https://github.com/m-bain/webvid)

  2. Download CC-3M (see https://ai.google.com/research/ConceptualCaptions/download)

  3. Train. python train.py --config CONFIG_PATH. Here are the different options:

    a. Dataset combinations

     i. CC-3M + WebVid2M: configs/cc-webvid2m-pt-i2k.json
     ii. WebVid2M : configs/webvid2m-pt-i2k.json
    

    You can add in an arbitrary number of image/video datasets for pre-training by adding as many dataloaders to the config file dataloader list as your heart desires. Adding more datasets will likely to higher downstream performance.

    b. Number of frames

    For image datasets, this should always be set to video_params": {"num_frames": 1, ...}.

    For video datasets, set this to what you want. N.B. More frames requires = more gpu memory.

    If, like us, you are not a big company and have limited compute, then you will benefit by training via a curriculum on the number of frames. A lot of the knowledge can be learned in the 1-frame setting, as we show in the paper. You can then finetune with more frames. See curriculum learning section

    c. Finetuning

    Set "load_checkpoint": "FULL_MODEL_PATH" in the config file. You can now use different experiment params, such as num_frames, to do curriculum learning for example.

🗄 Pretrained Weights

📚 Curriculum Learning on #frames

Curriculum learning on the number of frames in pretraining achieves similar performance with significant reduction in compute (both memory and training time). This is because model has higher throughput for fewer frames, as well as allowing a bigger batch size for the same gpu memory.

Our best model was trained on 1-frame then finetuned on 4-frames on CC+WebVid2M.

Train on 1-frame until the training loss converges, then finetune on 4-frames with the same config, from the 1-frame checkpoint via setting load_checkpoint in config file. 4-frame finetuning needs much less iterations (~10% of 1-frame setting is sufficient) since most of the knowledge is learned in the 1-frame setting.

📈 Experiment Logging and Visualising

This repository uses a sacred backbone for logging and tracking experiments, with a neptune front end. It makes life a lot easier. If you want to activate this:

  1. Create a neptune.ai account.
  2. Create a project, copy in your credentials in train.py and remove the ValueError
  3. Set neptune: true in your config files.

🎓 Cite

If you use this code in your research, please cite:

@misc{bain2021frozen,
      title={Frozen in Time: A Joint Video and Image Encoder for End-to-End Retrieval}, 
      author={Max Bain and Arsha Nagrani and Gül Varol and Andrew Zisserman},
      year={2021},
      eprint={2104.00650},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

🙏 Acknowledgements

This code is based off the pytorch-template https://github.com/victoresque/pytorch-template

As well as many good practices adopted from Samuel Albanie's https://github.com/albanie/collaborative-experts

Owner
PhD Student, VGG, Oxford
Geometric Algebra package for JAX

JAXGA - JAX Geometric Algebra GitHub | Docs JAXGA is a Geometric Algebra package on top of JAX. It can handle high dimensional algebras by storing onl

Robin Kahlow 36 Dec 22, 2022
Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression"

beyond-preserved-accuracy Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression" How to implemen

Kevin Canwen Xu 10 Dec 23, 2022
Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression.

Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression. Not an official Google product. Me

Google Research 27 Dec 12, 2022
[RSS 2021] An End-to-End Differentiable Framework for Contact-Aware Robot Design

DiffHand This repository contains the implementation for the paper An End-to-End Differentiable Framework for Contact-Aware Robot Design (RSS 2021). I

Jie Xu 60 Jan 04, 2023
Like ThreeJS but for Python and based on wgpu

pygfx A render engine, inspired by ThreeJS, but for Python and targeting Vulkan/Metal/DX12 (via wgpu). Introduction This is a Python render engine bui

139 Jan 07, 2023
Lipstick ain't enough: Beyond Color-Matching for In-the-Wild Makeup Transfer (CVPR 2021)

Table of Content Introduction Datasets Getting Started Requirements Usage Example Training & Evaluation CPM: Color-Pattern Makeup Transfer CPM is a ho

VinAI Research 248 Dec 13, 2022
Text2Art is an AI art generator powered with VQGAN + CLIP and CLIPDrawer models

Text2Art is an AI art generator powered with VQGAN + CLIP and CLIPDrawer models. You can easily generate all kind of art from drawing, painting, sketch, or even a specific artist style just using a t

Muhammad Fathy Rashad 643 Dec 30, 2022
NAACL'2021: Factual Probing Is [MASK]: Learning vs. Learning to Recall

OptiPrompt This is the PyTorch implementation of the paper Factual Probing Is [MASK]: Learning vs. Learning to Recall. We propose OptiPrompt, a simple

Princeton Natural Language Processing 150 Dec 20, 2022
ECLARE: Extreme Classification with Label Graph Correlations

ECLARE ECLARE: Extreme Classification with Label Graph Correlations @InProceedings{Mittal21b, author = "Mittal, A. and Sachdeva, N. and Agrawal

Extreme Classification 35 Nov 06, 2022
Repository for the paper "Online Domain Adaptation for Occupancy Mapping", RSS 2020

RSS 2020 - Online Domain Adaptation for Occupancy Mapping Repository for the paper "Online Domain Adaptation for Occupancy Mapping", Robotics: Science

Anthony 26 Sep 22, 2022
Convolutional 2D Knowledge Graph Embeddings resources

ConvE Convolutional 2D Knowledge Graph Embeddings resources. Paper: Convolutional 2D Knowledge Graph Embeddings Used in the paper, but do not use thes

Tim Dettmers 586 Dec 24, 2022
Code for "NeRS: Neural Reflectance Surfaces for Sparse-View 3D Reconstruction in the Wild," in NeurIPS 2021

Code for Neural Reflectance Surfaces (NeRS) [arXiv] [Project Page] [Colab Demo] [Bibtex] This repo contains the code for NeRS: Neural Reflectance Surf

Jason Y. Zhang 234 Dec 30, 2022
Heat transfer problemas solved using python

heat-transfer Heat transfer problems solved using python isolation-convection.py compares the temperature distribution on the problem as shown in the

2 Nov 14, 2021
Official implementation of "Generating 3D Molecules for Target Protein Binding"

Generating 3D Molecules for Target Protein Binding This is the official implementation of the GraphBP method proposed in the following paper. Meng Liu

DIVE Lab, Texas A&M University 74 Dec 07, 2022
A PyTorch Toolbox for Face Recognition

FaceX-Zoo FaceX-Zoo is a PyTorch toolbox for face recognition. It provides a training module with various supervisory heads and backbones towards stat

JDAI-CV 1.6k Jan 06, 2023
Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy Gradients

LSF-SAC Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy G

Hanhan 2 Aug 14, 2022
A simple python module to generate anchor (aka default/prior) boxes for object detection tasks.

PyBx WIP A simple python module to generate anchor (aka default/prior) boxes for object detection tasks. Calculated anchor boxes are returned as ndarr

thatgeeman 4 Dec 15, 2022
Jingju baseline - A baseline model of our project of Beijing opera script generation

Jingju Baseline It is a baseline of our project about Beijing opera script gener

midon 1 Jan 14, 2022
Hierarchical probabilistic 3D U-Net, with attention mechanisms (—𝘈𝘵𝘵𝘦𝘯𝘵𝘪𝘰𝘯 𝘜-𝘕𝘦𝘵, 𝘚𝘌𝘙𝘦𝘴𝘕𝘦𝘵) and a nested decoder structure with deep supervision (—𝘜𝘕𝘦𝘵++).

Hierarchical probabilistic 3D U-Net, with attention mechanisms (—𝘈𝘵𝘵𝘦𝘯𝘵𝘪𝘰𝘯 𝘜-𝘕𝘦𝘵, 𝘚𝘌𝘙𝘦𝘴𝘕𝘦𝘵) and a nested decoder structure with deep supervision (—𝘜𝘕𝘦𝘵++). Built in TensorFlow 2.5. Configured for vox

Diagnostic Image Analysis Group 32 Dec 08, 2022
Pose estimation for iOS and android using TensorFlow 2.0

💃 Mobile 2D Single Person (Or Your Own Object) Pose Estimation for TensorFlow 2.0 This repository is forked from edvardHua/PoseEstimationForMobile wh

tucan9389 165 Nov 16, 2022