A Joint Video and Image Encoder for End-to-End Retrieval

Overview

Frozen️ in Time ❄️ ️️️️

A Joint Video and Image Encoder for End-to-End Retrieval

project page | arXiv | webvid-data alt text Repository containing the code, models, data for end-to-end retrieval. WebVid data can be found here


📝 Preparation

  1. Create conda env conda env create -f requirements/frozen.yml

  2. Create data / experiment folders mkdir data; mkdir exps, note this can just be a symlink to where you want to store big data.

🔧 Finetuning (benchmarks: MSR-VTT)

  1. wget https://www.robots.ox.ac.uk/~maxbain/frozen-in-time/data/MSRVTT.zip -P data; unzip data/MSRVTT.zip -d data

  2. Change num_gpus in the config file accordingly.

  3. Train python train.py --config configs/msrvtt_4f_i21k.json

  4. Test python test.py --resume exps/models/{EXP_NAME}/{EXP_TIMESTAMP}/model_best.pth

For finetuning a pretrained model, set "load_checkpoint": "PATH_TO_MODEL" in the config file.

🏋 ️‍️ Pretraining

  1. Download WebVid-2M (see https://github.com/m-bain/webvid)

  2. Download CC-3M (see https://ai.google.com/research/ConceptualCaptions/download)

  3. Train. python train.py --config CONFIG_PATH. Here are the different options:

    a. Dataset combinations

     i. CC-3M + WebVid2M: configs/cc-webvid2m-pt-i2k.json
     ii. WebVid2M : configs/webvid2m-pt-i2k.json
    

    You can add in an arbitrary number of image/video datasets for pre-training by adding as many dataloaders to the config file dataloader list as your heart desires. Adding more datasets will likely to higher downstream performance.

    b. Number of frames

    For image datasets, this should always be set to video_params": {"num_frames": 1, ...}.

    For video datasets, set this to what you want. N.B. More frames requires = more gpu memory.

    If, like us, you are not a big company and have limited compute, then you will benefit by training via a curriculum on the number of frames. A lot of the knowledge can be learned in the 1-frame setting, as we show in the paper. You can then finetune with more frames. See curriculum learning section

    c. Finetuning

    Set "load_checkpoint": "FULL_MODEL_PATH" in the config file. You can now use different experiment params, such as num_frames, to do curriculum learning for example.

🗄 Pretrained Weights

📚 Curriculum Learning on #frames

Curriculum learning on the number of frames in pretraining achieves similar performance with significant reduction in compute (both memory and training time). This is because model has higher throughput for fewer frames, as well as allowing a bigger batch size for the same gpu memory.

Our best model was trained on 1-frame then finetuned on 4-frames on CC+WebVid2M.

Train on 1-frame until the training loss converges, then finetune on 4-frames with the same config, from the 1-frame checkpoint via setting load_checkpoint in config file. 4-frame finetuning needs much less iterations (~10% of 1-frame setting is sufficient) since most of the knowledge is learned in the 1-frame setting.

📈 Experiment Logging and Visualising

This repository uses a sacred backbone for logging and tracking experiments, with a neptune front end. It makes life a lot easier. If you want to activate this:

  1. Create a neptune.ai account.
  2. Create a project, copy in your credentials in train.py and remove the ValueError
  3. Set neptune: true in your config files.

🎓 Cite

If you use this code in your research, please cite:

@misc{bain2021frozen,
      title={Frozen in Time: A Joint Video and Image Encoder for End-to-End Retrieval}, 
      author={Max Bain and Arsha Nagrani and Gül Varol and Andrew Zisserman},
      year={2021},
      eprint={2104.00650},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

🙏 Acknowledgements

This code is based off the pytorch-template https://github.com/victoresque/pytorch-template

As well as many good practices adopted from Samuel Albanie's https://github.com/albanie/collaborative-experts

Owner
PhD Student, VGG, Oxford
A robust pointcloud registration pipeline based on correlation.

PHASER: A Robust and Correspondence-Free Global Pointcloud Registration Ubuntu 18.04+ROS Melodic: Overview Pointcloud registration using correspondenc

ETHZ ASL 101 Dec 01, 2022
Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more

JAX: Autograd and XLA Quickstart | Transformations | Install guide | Neural net libraries | Change logs | Reference docs | Code search News: JAX tops

Google 21.3k Jan 01, 2023
PyTorch Implementation of [1611.06440] Pruning Convolutional Neural Networks for Resource Efficient Inference

PyTorch implementation of [1611.06440 Pruning Convolutional Neural Networks for Resource Efficient Inference] This demonstrates pruning a VGG16 based

Jacob Gildenblat 836 Dec 26, 2022
Official PyTorch Implementation for InfoSwap: Information Bottleneck Disentanglement for Identity Swapping

InfoSwap: Information Bottleneck Disentanglement for Identity Swapping Code usage Please check out the user manual page. Paper Gege Gao, Huaibo Huang,

Grace Hešeri 56 Dec 20, 2022
Code for Mesh Convolution Using a Learned Kernel Basis

Mesh Convolution This repository contains the implementation (in PyTorch) of the paper FULLY CONVOLUTIONAL MESH AUTOENCODER USING EFFICIENT SPATIALLY

Yi_Zhou 35 Jan 03, 2023
Implementation of Convolutional LSTM in PyTorch.

ConvLSTM_pytorch This file contains the implementation of Convolutional LSTM in PyTorch made by me and DavideA. We started from this implementation an

Andrea Palazzi 1.3k Dec 29, 2022
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

Introduction This is a Python package available on PyPI for NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pyto

Artit 'Art' Wangperawong 5 Sep 29, 2021
Training DALL-E with volunteers from all over the Internet using hivemind and dalle-pytorch (NeurIPS 2021 demo)

Training DALL-E with volunteers from all over the Internet This repository is a part of the NeurIPS 2021 demonstration "Training Transformers Together

<a href=[email protected]"> 19 Dec 13, 2022
Pytorch implementation of "Training a 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet"

Token Labeling: Training an 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet (arxiv) This is a Pytorch implementation of our te

蒋子航 383 Dec 27, 2022
Pytorch reimplementation of PSM-Net: "Pyramid Stereo Matching Network"

This is a Pytorch Lightning version PSMNet which is based on JiaRenChang/PSMNet. use python main.py to start training. PSM-Net Pytorch reimplementatio

XIAOTIAN LIU 1 Nov 25, 2021
S-attack library. Official implementation of two papers "Are socially-aware trajectory prediction models really socially-aware?" and "Vehicle trajectory prediction works, but not everywhere".

S-attack library: A library for evaluating trajectory prediction models This library contains two research projects to assess the trajectory predictio

VITA lab at EPFL 71 Jan 04, 2023
FlingBot: The Unreasonable Effectiveness of Dynamic Manipulations for Cloth Unfolding

This repository contains code for training and evaluating FlingBot in both simulation and real-world settings on a dual-UR5 robot arm setup for Ubuntu 18.04

Columbia Artificial Intelligence and Robotics Lab 70 Dec 06, 2022
adversarial_multi_armed_bandit_variable_plays

Adversarial Multi-Armed Bandit with Variable Plays This code is for paper: Adversarial Online Learning with Variable Plays in the Evasion-and-Pursuit

Yiyang Wang 1 Oct 28, 2021
Constraint-based geometry sketcher for blender

Constraint-based sketcher addon for Blender that allows to create precise 2d shapes by defining a set of geometric constraints like tangent, distance,

1.7k Dec 31, 2022
Iris prediction model is used to classify iris species created julia's DecisionTree, DataFrames, JLD2, PlotlyJS and Statistics packages.

Iris Species Predictor Iris prediction is used to classify iris species using their sepal length, sepal width, petal length and petal width created us

Siva Prakash 2 Jan 06, 2022
Official Implementation of DDOD (Disentangle your Dense Object Detector), ACM MM2021

Disentangle Your Dense Object Detector This repo contains the supported code and configuration files to reproduce object detection results of Disentan

loveSnowBest 51 Jan 07, 2023
Tensor-based approaches for fMRI classification

tensor-fmri Using tensor-based approaches to classify fMRI data from StarPLUS. Citation If you use any code in this repository, please cite the follow

4 Sep 07, 2022
Breaking the Dilemma of Medical Image-to-image Translation

Breaking the Dilemma of Medical Image-to-image Translation Supervised Pix2Pix and unsupervised Cycle-consistency are two modes that dominate the field

Kid Liet 86 Dec 21, 2022
Python/Rust implementations and notes from Proofs Arguments and Zero Knowledge

What is this? This is where I'll be collecting resources related to the Study Group on Dr. Justin Thaler's Proofs Arguments And Zero Knowledge Book. T

Thor 66 Jan 04, 2023
The repo contains the code to train and evaluate a system which extracts relations and explanations from dialogue.

The repo contains the code to train and evaluate a system which extracts relations and explanations from dialogue. How do I cite D-REX? For now, cite

Alon Albalak 6 Mar 31, 2022