A Joint Video and Image Encoder for End-to-End Retrieval

Overview

Frozen️ in Time ❄️ ️️️️

A Joint Video and Image Encoder for End-to-End Retrieval

project page | arXiv | webvid-data alt text Repository containing the code, models, data for end-to-end retrieval. WebVid data can be found here


📝 Preparation

  1. Create conda env conda env create -f requirements/frozen.yml

  2. Create data / experiment folders mkdir data; mkdir exps, note this can just be a symlink to where you want to store big data.

🔧 Finetuning (benchmarks: MSR-VTT)

  1. wget https://www.robots.ox.ac.uk/~maxbain/frozen-in-time/data/MSRVTT.zip -P data; unzip data/MSRVTT.zip -d data

  2. Change num_gpus in the config file accordingly.

  3. Train python train.py --config configs/msrvtt_4f_i21k.json

  4. Test python test.py --resume exps/models/{EXP_NAME}/{EXP_TIMESTAMP}/model_best.pth

For finetuning a pretrained model, set "load_checkpoint": "PATH_TO_MODEL" in the config file.

🏋 ️‍️ Pretraining

  1. Download WebVid-2M (see https://github.com/m-bain/webvid)

  2. Download CC-3M (see https://ai.google.com/research/ConceptualCaptions/download)

  3. Train. python train.py --config CONFIG_PATH. Here are the different options:

    a. Dataset combinations

     i. CC-3M + WebVid2M: configs/cc-webvid2m-pt-i2k.json
     ii. WebVid2M : configs/webvid2m-pt-i2k.json
    

    You can add in an arbitrary number of image/video datasets for pre-training by adding as many dataloaders to the config file dataloader list as your heart desires. Adding more datasets will likely to higher downstream performance.

    b. Number of frames

    For image datasets, this should always be set to video_params": {"num_frames": 1, ...}.

    For video datasets, set this to what you want. N.B. More frames requires = more gpu memory.

    If, like us, you are not a big company and have limited compute, then you will benefit by training via a curriculum on the number of frames. A lot of the knowledge can be learned in the 1-frame setting, as we show in the paper. You can then finetune with more frames. See curriculum learning section

    c. Finetuning

    Set "load_checkpoint": "FULL_MODEL_PATH" in the config file. You can now use different experiment params, such as num_frames, to do curriculum learning for example.

🗄 Pretrained Weights

📚 Curriculum Learning on #frames

Curriculum learning on the number of frames in pretraining achieves similar performance with significant reduction in compute (both memory and training time). This is because model has higher throughput for fewer frames, as well as allowing a bigger batch size for the same gpu memory.

Our best model was trained on 1-frame then finetuned on 4-frames on CC+WebVid2M.

Train on 1-frame until the training loss converges, then finetune on 4-frames with the same config, from the 1-frame checkpoint via setting load_checkpoint in config file. 4-frame finetuning needs much less iterations (~10% of 1-frame setting is sufficient) since most of the knowledge is learned in the 1-frame setting.

📈 Experiment Logging and Visualising

This repository uses a sacred backbone for logging and tracking experiments, with a neptune front end. It makes life a lot easier. If you want to activate this:

  1. Create a neptune.ai account.
  2. Create a project, copy in your credentials in train.py and remove the ValueError
  3. Set neptune: true in your config files.

🎓 Cite

If you use this code in your research, please cite:

@misc{bain2021frozen,
      title={Frozen in Time: A Joint Video and Image Encoder for End-to-End Retrieval}, 
      author={Max Bain and Arsha Nagrani and Gül Varol and Andrew Zisserman},
      year={2021},
      eprint={2104.00650},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

🙏 Acknowledgements

This code is based off the pytorch-template https://github.com/victoresque/pytorch-template

As well as many good practices adopted from Samuel Albanie's https://github.com/albanie/collaborative-experts

Owner
PhD Student, VGG, Oxford
HairCLIP: Design Your Hair by Text and Reference Image

Overview This repository hosts the official PyTorch implementation of the paper: "HairCLIP: Design Your Hair by Text and Reference Image". Our single

322 Jan 06, 2023
Python Algorithm Interview Book Review

파이썬 알고리즘 인터뷰 책 리뷰 리뷰 IT 대기업에 들어가고 싶은 목표가 있다. 내가 꿈꿔온 회사에서 일하는 사람들의 모습을 보면 멋있다고 생각이 들고 나의 목표에 대한 열망이 강해지는 것 같다. 미래의 핵심 사업 중 하나인 SW 부분을 이끌고 발전시키는 우리나라의 I

SharkBSJ 1 Dec 14, 2021
Class-Attentive Diffusion Network for Semi-Supervised Classification [AAAI'21] (official implementation)

Class-Attentive Diffusion Network for Semi-Supervised Classification Official Implementation of AAAI 2021 paper Class-Attentive Diffusion Network for

Jongin Lim 7 Sep 20, 2022
[NeurIPS-2021] Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data

MosaicKD Code for NeurIPS-21 paper "Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data" 1. Motivation Natural images share common l

ZJU-VIPA 37 Nov 10, 2022
Breaking the Curse of Space Explosion: Towards Efficient NAS with Curriculum Search

Breaking the Curse of Space Explosion: Towards Effcient NAS with Curriculum Search Pytorch implementation for "Breaking the Curse of Space Explosion:

guoyong 17 Jan 03, 2023
code for paper "Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning" by Zhongzheng Ren*, Raymond A. Yeh*, Alexander G. Schwing.

Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning Overview This code is for paper: Not All Unlabeled Data are Equa

Jason Ren 22 Nov 23, 2022
It is an open dataset for object detection in remote sensing images.

RSOD-Dataset It is an open dataset for object detection in remote sensing images. The dataset includes aircraft, oiltank, playground and overpass. The

136 Dec 08, 2022
a project for 3D multi-object tracking

a project for 3D multi-object tracking

155 Jan 04, 2023
Vision Transformer for 3D medical image registration (Pytorch).

ViT-V-Net: Vision Transformer for Volumetric Medical Image Registration keywords: vision transformer, convolutional neural networks, image registratio

Junyu Chen 192 Dec 20, 2022
Autoregressive Models in PyTorch.

Autoregressive This repository contains all the necessary PyTorch code, tailored to my presentation, to train and generate data from WaveNet-like auto

Christoph Heindl 41 Oct 09, 2022
ML-Decoder: Scalable and Versatile Classification Head

ML-Decoder: Scalable and Versatile Classification Head Paper Official PyTorch Implementation Tal Ridnik, Gilad Sharir, Avi Ben-Cohen, Emanuel Ben-Baru

189 Jan 04, 2023
A Protein-RNA Interface Predictor Based on Semantics of Sequences

PRIP PRIP:A Protein-RNA Interface Predictor Based on Semantics of Sequences installation gensim==3.8.3 matplotlib==3.1.3 xgboost==1.3.3 prettytable==2

李优 0 Mar 25, 2022
Official implementation of VQ-Diffusion

Official implementation of VQ-Diffusion: Vector Quantized Diffusion Model for Text-to-Image Synthesis

Microsoft 592 Jan 03, 2023
Ludwig Benchmarking Toolkit

Ludwig Benchmarking Toolkit The Ludwig Benchmarking Toolkit is a personalized benchmarking toolkit for running end-to-end benchmark studies across an

HazyResearch 17 Nov 18, 2022
Deep and online learning with spiking neural networks in Python

Introduction The brain is the perfect place to look for inspiration to develop more efficient neural networks. One of the main differences with modern

Jason Eshraghian 447 Jan 03, 2023
No Code AI/ML platform

NoCodeAIML No Code AI/ML platform - Community Edition Video credits: Uday Kiran Typical No Code AI/ML Platform will have features like drag and drop,

Bhagvan Kommadi 5 Jan 28, 2022
O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis

O-CNN This repository contains the implementation of our papers related with O-CNN. The code is released under the MIT license. O-CNN: Octree-based Co

Microsoft 607 Dec 28, 2022
Pytorch implementation of NeurIPS 2021 paper: Geometry Processing with Neural Fields.

Geometry Processing with Neural Fields Pytorch implementation for the NeurIPS 2021 paper: Geometry Processing with Neural Fields Guandao Yang, Serge B

Guandao Yang 162 Dec 16, 2022
Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal, multi-exposure and multi-focus image fusion.

U2Fusion Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal (VIS-IR, medical), multi

Han Xu 129 Dec 11, 2022
A general-purpose programming language, focused on simplicity, safety and stability.

The Rivet programming language A general-purpose programming language, focused on simplicity, safety and stability. Rivet's goal is to be a very power

The Rivet programming language 17 Dec 29, 2022