Automatic caption evaluation metric based on typicality analysis.

Related tags

Deep LearningSMURF
Overview

SeMantic and linguistic UndeRstanding Fusion (SMURF)

made-with-python License: MIT

Automatic caption evaluation metric described in the paper "SMURF: SeMantic and linguistic UndeRstanding Fusion for Caption Evaluation via Typicality Analysis" (ACL 2021).

arXiv: https://arxiv.org/abs/2106.01444

ACL Anthology: https://aclanthology.org/2021.acl-long.175/

Overview

SMURF is an automatic caption evaluation metric that combines a novel semantic evaluation algorithm (SPARCS) and novel fluency evaluation algorithms (SPURTS and MIMA) for both caption-level and system-level analysis. These evaluations were developed to be generalizable and as a result demonstrate a high correlation with human judgment across many relevant datasets. See paper for more details.

Requirements

You can run requirements/install.sh to quickly install all the requirements in an Anaconda environment. The requirements are:

  • python 3
  • torch>=1.0.0
  • numpy
  • nltk>=3.5.0
  • pandas>=1.0.1
  • matplotlib
  • transformers>=3.0.0
  • shapely
  • sklearn
  • sentencepiece

Usage

./smurf_example.py provides working examples of the following functions:

Caption-Level Scoring

Returns a dictionary with scores for semantic similarity between reference captions and candidate captions (SPARCS), style/diction quality of candidate text (SPURTS), grammar outlier penalty of candidate text (MIMA), and the fusion of these scores (SMURF). Input sentences should be preprocessed before being fed into the smurf_eval_captions object as shown in the example. Evaluations with SPARCS require a list of reference sentences while evaluations with SPURTS and MIMA do not use reference sentences.

System-Level Analysis

After reading in and standardizing caption-level scores, generates a plot that can be used to give an overall evaluation of captioner performances along with relevant system-level scores (intersection with reference captioner and total grammar outlier penalties) for each captioner. An example of such a plot is shown below:

The number of captioners you are comparing should be specified when instantiating a smurf_system_analysis object. In order to generate the plot correctly, the captions fed into the caption-level scoring for each candidate captioner (C1, C2,...) should be organized in the following format with the C1 captioner as the ground truth:

[C1 image 1 output, C2 image 1 output,..., C1 image 2 output, C2 image 2 output,...].

Author/Maintainer:

Joshua Feinglass (https://scholar.google.com/citations?user=V2h3z7oAAAAJ&hl=en)

If you find this repo useful, please cite:

@inproceedings{feinglass2021smurf,
  title={SMURF: SeMantic and linguistic UndeRstanding Fusion for Caption Evaluation via Typicality Analysis},
  author={Joshua Feinglass and Yezhou Yang},
  booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
  year={2021},
  url={https://aclanthology.org/2021.acl-long.175/}
}
Owner
Joshua Feinglass
Joshua Feinglass
Cleaned test data list of DukeMTMC-reID, ICCV2021

Cleaned DukeMTMC-reID Cleaned data list of DukeMTMC-reID released with our paper accepted by ICCV 2021: Learning Instance-level Spatial-Temporal Patte

14 Feb 19, 2022
Codes for Causal Semantic Generative model (CSG), the model proposed in "Learning Causal Semantic Representation for Out-of-Distribution Prediction" (NeurIPS-21)

Learning Causal Semantic Representation for Out-of-Distribution Prediction This repository is the official implementation of "Learning Causal Semantic

Chang Liu 54 Dec 01, 2022
A Fast Monotone Rotating Shallow Water model

pyRSW A Fast Monotone Rotating Shallow Water model How fast? As fast as a sustained 2 Gflop/s per core on a 2.5 GHz cpu (or 2048 Gflop/s with 1024 cor

Guillaume Roullet 13 Sep 28, 2022
《Improving Unsupervised Image Clustering With Robust Learning》(2020)

Improving Unsupervised Image Clustering With Robust Learning This repo is the PyTorch codes for "Improving Unsupervised Image Clustering With Robust L

Sungwon Park 129 Dec 27, 2022
Price-Prediction-For-a-Dream-Home - A machine learning based linear regression trained model for house price prediction.

Price-Prediction-For-a-Dream-Home ROADMAP TO THIS LINEAR REGRESSION BASED HOUSE PRICE PREDICTION PREDICTION MODEL Import all the dependencies of the p

DIKSHA DESWAL 1 Dec 29, 2021
This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset.

FACT This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset. To cite, please use:

105 Dec 17, 2022
RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds

RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds This repository contains the code asscoiated

Felix Hensel 14 Dec 12, 2022
FrankMocap: A Strong and Easy-to-use Single View 3D Hand+Body Pose Estimator

FrankMocap pursues an easy-to-use single view 3D motion capture system developed by Facebook AI Research (FAIR). FrankMocap provides state-of-the-art 3D pose estimation outputs for body, hand, and bo

Facebook Research 1.9k Jan 07, 2023
Leveraging Social Influence based on Users Activity Centers for Point-of-Interest Recommendation

SUCP Leveraging Social Influence based on Users Activity Centers for Point-of-Interest Recommendation () Direct Friends (i.e., users who follow each o

Kosar 8 Nov 26, 2022
Explainability of the Implications of Supervised and Unsupervised Face Image Quality Estimations Through Activation Map Variation Analyses in Face Recognition Models

Explainable_FIQA_WITH_AMVA Note This is the official repository of the paper: Explainability of the Implications of Supervised and Unsupervised Face I

3 May 08, 2022
3D Human Pose Machines with Self-supervised Learning

3D Human Pose Machines with Self-supervised Learning Keze Wang, Liang Lin, Chenhan Jiang, Chen Qian, and Pengxu Wei, “3D Human Pose Machines with Self

Chenhan Jiang 398 Dec 20, 2022
Space Time Recurrent Memory Network - Pytorch

Space Time Recurrent Memory Network - Pytorch (wip) Implementation of Space Time Recurrent Memory Network, recurrent network competitive with attentio

Phil Wang 50 Nov 07, 2021
Label Mask for Multi-label Classification

LM-MLC 一种基于完型填空的多标签分类算法 1 前言 本文主要介绍本人在全球人工智能技术创新大赛【赛道一】设计的一种基于完型填空(模板)的多标签分类算法:LM-MLC,该算法拟合能力很强能感知标签关联性,在多个数据集上测试表明该算法与主流算法无显著性差异,在该比赛数据集上的dev效果很好,但是由

52 Nov 20, 2022
Simultaneous Detection and Segmentation

Simultaneous Detection and Segmentation This is code for the ECCV Paper: Simultaneous Detection and Segmentation Bharath Hariharan, Pablo Arbelaez,

Bharath Hariharan 96 Jul 20, 2022
Official implementation of CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21

CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21 For more information, check out the paper on [arXiv]. Training with different

Sunghwan Hong 120 Jan 04, 2023
Implementation of SwinTransformerV2 in TensorFlow.

SwinTransformerV2-TensorFlow A TensorFlow implementation of SwinTransformerV2 by Microsoft Research Asia, based on their official implementation of Sw

Phan Nguyen 2 May 30, 2022
Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel order of RGB and BGR. Simple Channel Converter for ONNX.

scc4onnx Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel

Katsuya Hyodo 16 Dec 22, 2022
Контрольная работа по математическим методам машинного обучения

ML-MathMethods-Test Контрольная работа по математическим методам машинного обучения. Вычисление основных статистик, диаграмм и графиков, проверка разл

Stas Ivanovskii 1 Jan 06, 2022
Datasets for new state-of-the-art challenge in disentanglement learning

High resolution disentanglement datasets This repository contains the Falcor3D and Isaac3D datasets, which present a state-of-the-art challenge for co

NVIDIA Research Projects 37 May 26, 2022
An end-to-end framework for mixed-integer optimization with data-driven learned constraints.

OptiCL OptiCL is an end-to-end framework for mixed-integer optimization (MIO) with data-driven learned constraints. We address a problem setting in wh

Holly Wiberg 57 Dec 26, 2022