DiffQ performs differentiable quantization using pseudo quantization noise. It can automatically tune the number of bits used per weight or group of weights, in order to achieve a given trade-off between model size and accuracy.

Related tags

Deep Learningdiffq
Overview

Differentiable Model Compression via Pseudo Quantization Noise

linter badge tests badge cov badge

DiffQ performs differentiable quantization using pseudo quantization noise. It can automatically tune the number of bits used per weight or group of weights, in order to achieve a given trade-off between model size and accuracy.

Go read our paper for more details.

Requirements

DiffQ requires Python 3.7, and a reasonably recent version of PyTorch (1.7.1 ideally). To install DiffQ, you can run from the root of the repository:

pip install .

You can also install directly from PyPI with pip install diffq.

Usage

import torch
from torch.nn import functional as F
from diffq import DiffQuantizer

my_model = MyModel()
my_optim = ...  # The optimizer must be created before the quantizer
quantizer = DiffQuantizer(my_model)
quantizer.setup_optimizer(my_optim)

# Or, if you want to use a specific optimizer for DiffQ
quantizer.opt = torch.optim.Adam([{"params": []}])
quantizer.setup_optimizer(quantizer.opt)

# Distributed data parallel must be created after DiffQuantizer!
dmodel = torch.distributed.DistributedDataParallel(...)

# Then go on training as usual, just don't forget to call my_model.train() and my_model.eval().
penalty = 1e-3
for batch in loader:
    ...
    my_optim.zero_grad()
    # If you used a separate optimizer for DiffQ, call
    # quantizer.opt.zero_grad()

    # The `penalty` parameter here will control the tradeoff between model size and model accuracy.
    loss = F.mse_loss(x, y) + penalty * quantizer.model_size()
    my_optim.step()
    # If you used a separate optimizer for DiffQ, call
    # quantizer.opt.step()

# To get the true "naive" model size call
quantizer.true_model_size()

# To get the gzipped model size without actually dumping to disk
quantizer.compressed_model_size()

# When you want to dump your final model:
torch.save(quantizer.get_quantized_state(), "some_file.th")
# DiffQ will not optimally code integers. In order to actually get most
# of the gain in terms of size, you should call call `gzip some_file.th`.

# You can later load back the model with
quantizer.restore_quantized_state(torch.load("some_file.th"))

Documentation

See the API documentation.

Examples

We provide three examples in the examples/ folder. One is for CIFAR-10/100, using standard architecture such as Wide-ResNet, ResNet or MobileNet. The second is based on the DeiT visual transformer. The third is a language modeling task on Wikitext-103, using Fairseq

The DeiT and Fairseq examples are provided as a patch on the original codebase at a specific commit. You can initialize the git submodule and apply the patches by running

make examples

For more details on each example, go checkout their specific READMEs:

Installation for development

This will install the dependencies and a diffq in developer mode (changes to the files will directly reflect), along with the dependencies to run unit tests.

pip install -e '.[dev]'

Updating the patch based examples

In order to update the patches, first run make examples to properly initialize the sub repos. Then perform all the changes you want, commit them and run make patches. This will update the patches for each repo. Once this is done, and you checked that all the changes you did are properly included in the new patch files, you can run make reset (this will remove all your changes you did from the submodules, so do check the patch files before calling this) before calling git add -u .; git commit -m "my changes" and pushing.

Test

You can run the unit tests with

make tests

Citation

If you use this code or results in your paper, please cite our work as:

@article{defossez2021differentiable,
  title={Differentiable Model Compression via Pseudo Quantization Noise},
  author={D{\'e}fossez, Alexandre and Adi, Yossi and Synnaeve, Gabriel},
  journal={arXiv preprint arXiv:2104.09987},
  year={2021}
}

License

This repository is released under the CC-BY-NC 4.0. license as found in the LICENSE file, except for the following parts that is under the MIT license. The files examples/cifar/src/mobilenet.py and examples/cifar/src/src/resnet.py are taken from kuangliu/pytorch-cifar, released as MIT. The file examples/cifar/src/wide_resnet.py is taken from meliketoy/wide-resnet, released as MIT. See each file headers for the detailed license.

Owner
Facebook Research
Facebook Research
[IJCAI'21] Deep Automatic Natural Image Matting

Deep Automatic Natural Image Matting [IJCAI-21] This is the official repository of the paper Deep Automatic Natural Image Matting. Introduction | Netw

Jizhizi_Li 316 Jan 06, 2023
Vector Neurons: A General Framework for SO(3)-Equivariant Networks

Vector Neurons: A General Framework for SO(3)-Equivariant Networks Created by Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacc

Congyue Deng 332 Dec 29, 2022
Predicting 10 different clothing types using Xception pre-trained model.

Predicting-Clothing-Types Predicting 10 different clothing types using Xception pre-trained model from Keras library. It is reimplemented version from

AbdAssalam Ahmad 3 Dec 29, 2021
Решения, подсказки, тесты и утилиты для тренировки по алгоритмам от Яндекса.

Решения и подсказки к тренировке по алгоритмам от Яндекса Что есть внутри Решения с подсказками и комментариями; рекомендую сначала смотреть md файл п

Yankovsky Andrey 50 Dec 26, 2022
Codes for the compilation and visualization examples to the HIF vegetation dataset

High-impedance vegetation fault dataset This repository contains the codes that compile the "Vegetation Conduction Ignition Test Report" data, which a

1 Dec 12, 2021
The missing CMake project initializer

cmake-init - The missing CMake project initializer Opinionated CMake project initializer to generate CMake projects that are FetchContent ready, separ

1k Jan 01, 2023
This is an official implementation for "AS-MLP: An Axial Shifted MLP Architecture for Vision".

AS-MLP architecture for Image Classification Model Zoo Image Classification on ImageNet-1K Network Resolution Top-1 (%) Params FLOPs Throughput (image

SVIP Lab 106 Dec 12, 2022
It's A ML based Web Site build with python and Django to find the breed of the dog

ML-Based-Dog-Breed-Identifier This is a Django Based Web Site To Identify the Breed of which your DOG belogs All You Need To Do is to Follow These Ste

Sanskar Dwivedi 2 Oct 12, 2022
ManipulaTHOR, a framework that facilitates visual manipulation of objects using a robotic arm

ManipulaTHOR: A Framework for Visual Object Manipulation Kiana Ehsani, Winson Han, Alvaro Herrasti, Eli VanderBilt, Luca Weihs, Eric Kolve, Aniruddha

AI2 65 Dec 30, 2022
Pytorch implementation of the paper Time-series Generative Adversarial Networks

TimeGAN-pytorch Pytorch implementation of the paper Time-series Generative Adversarial Networks presented at NeurIPS'19. Jinsung Yoon, Daniel Jarrett

Zhiwei ZHANG 21 Nov 24, 2022
JugLab 33 Dec 30, 2022
Implementation of paper "Towards a Unified View of Parameter-Efficient Transfer Learning"

A Unified Framework for Parameter-Efficient Transfer Learning This is the official implementation of the paper: Towards a Unified View of Parameter-Ef

Junxian He 216 Dec 29, 2022
A Dynamic Residual Self-Attention Network for Lightweight Single Image Super-Resolution

DRSAN A Dynamic Residual Self-Attention Network for Lightweight Single Image Super-Resolution Karam Park, Jae Woong Soh, and Nam Ik Cho Environments U

4 May 10, 2022
Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels.

The Face Synthetics dataset Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels. It was introduced in ou

Microsoft 608 Jan 02, 2023
PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech Enhancement."

FullSubNet This Git repository for the official PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech E

郝翔 357 Jan 04, 2023
DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos.

DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos A concise deep reinforcement learning libr

329 Jan 03, 2023
ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab

AliceMind AliceMind: ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab This repository provides pre-trained encode

Alibaba 1.4k Jan 01, 2023
This repository contains a re-implementation of the code for the CVPR 2021 paper "Omnimatte: Associating Objects and Their Effects in Video."

Omnimatte in PyTorch This repository contains a re-implementation of the code for the CVPR 2021 paper "Omnimatte: Associating Objects and Their Effect

Erika Lu 728 Dec 28, 2022
Cross-Document Coreference Resolution

Cross-Document Coreference Resolution This repository contains code and models for end-to-end cross-document coreference resolution, as decribed in ou

Arie Cattan 29 Nov 28, 2022
WRENCH: Weak supeRvision bENCHmark

🔧 What is it? Wrench is a benchmark platform containing diverse weak supervision tasks. It also provides a common and easy framework for development

Jieyu Zhang 176 Dec 28, 2022