DiffQ performs differentiable quantization using pseudo quantization noise. It can automatically tune the number of bits used per weight or group of weights, in order to achieve a given trade-off between model size and accuracy.

Related tags

Deep Learningdiffq
Overview

Differentiable Model Compression via Pseudo Quantization Noise

linter badge tests badge cov badge

DiffQ performs differentiable quantization using pseudo quantization noise. It can automatically tune the number of bits used per weight or group of weights, in order to achieve a given trade-off between model size and accuracy.

Go read our paper for more details.

Requirements

DiffQ requires Python 3.7, and a reasonably recent version of PyTorch (1.7.1 ideally). To install DiffQ, you can run from the root of the repository:

pip install .

You can also install directly from PyPI with pip install diffq.

Usage

import torch
from torch.nn import functional as F
from diffq import DiffQuantizer

my_model = MyModel()
my_optim = ...  # The optimizer must be created before the quantizer
quantizer = DiffQuantizer(my_model)
quantizer.setup_optimizer(my_optim)

# Or, if you want to use a specific optimizer for DiffQ
quantizer.opt = torch.optim.Adam([{"params": []}])
quantizer.setup_optimizer(quantizer.opt)

# Distributed data parallel must be created after DiffQuantizer!
dmodel = torch.distributed.DistributedDataParallel(...)

# Then go on training as usual, just don't forget to call my_model.train() and my_model.eval().
penalty = 1e-3
for batch in loader:
    ...
    my_optim.zero_grad()
    # If you used a separate optimizer for DiffQ, call
    # quantizer.opt.zero_grad()

    # The `penalty` parameter here will control the tradeoff between model size and model accuracy.
    loss = F.mse_loss(x, y) + penalty * quantizer.model_size()
    my_optim.step()
    # If you used a separate optimizer for DiffQ, call
    # quantizer.opt.step()

# To get the true "naive" model size call
quantizer.true_model_size()

# To get the gzipped model size without actually dumping to disk
quantizer.compressed_model_size()

# When you want to dump your final model:
torch.save(quantizer.get_quantized_state(), "some_file.th")
# DiffQ will not optimally code integers. In order to actually get most
# of the gain in terms of size, you should call call `gzip some_file.th`.

# You can later load back the model with
quantizer.restore_quantized_state(torch.load("some_file.th"))

Documentation

See the API documentation.

Examples

We provide three examples in the examples/ folder. One is for CIFAR-10/100, using standard architecture such as Wide-ResNet, ResNet or MobileNet. The second is based on the DeiT visual transformer. The third is a language modeling task on Wikitext-103, using Fairseq

The DeiT and Fairseq examples are provided as a patch on the original codebase at a specific commit. You can initialize the git submodule and apply the patches by running

make examples

For more details on each example, go checkout their specific READMEs:

Installation for development

This will install the dependencies and a diffq in developer mode (changes to the files will directly reflect), along with the dependencies to run unit tests.

pip install -e '.[dev]'

Updating the patch based examples

In order to update the patches, first run make examples to properly initialize the sub repos. Then perform all the changes you want, commit them and run make patches. This will update the patches for each repo. Once this is done, and you checked that all the changes you did are properly included in the new patch files, you can run make reset (this will remove all your changes you did from the submodules, so do check the patch files before calling this) before calling git add -u .; git commit -m "my changes" and pushing.

Test

You can run the unit tests with

make tests

Citation

If you use this code or results in your paper, please cite our work as:

@article{defossez2021differentiable,
  title={Differentiable Model Compression via Pseudo Quantization Noise},
  author={D{\'e}fossez, Alexandre and Adi, Yossi and Synnaeve, Gabriel},
  journal={arXiv preprint arXiv:2104.09987},
  year={2021}
}

License

This repository is released under the CC-BY-NC 4.0. license as found in the LICENSE file, except for the following parts that is under the MIT license. The files examples/cifar/src/mobilenet.py and examples/cifar/src/src/resnet.py are taken from kuangliu/pytorch-cifar, released as MIT. The file examples/cifar/src/wide_resnet.py is taken from meliketoy/wide-resnet, released as MIT. See each file headers for the detailed license.

Owner
Facebook Research
Facebook Research
Unsupervised Video Interpolation using Cycle Consistency

Unsupervised Video Interpolation using Cycle Consistency Project | Paper | YouTube Unsupervised Video Interpolation using Cycle Consistency Fitsum A.

NVIDIA Corporation 100 Nov 30, 2022
Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples

Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples This repository is the official implementation of paper [Qimera: Data-free Q

Kanghyun Choi 21 Nov 03, 2022
Gym for multi-agent reinforcement learning

PettingZoo is a Python library for conducting research in multi-agent reinforcement learning, akin to a multi-agent version of Gym. Our website, with

Farama Foundation 1.6k Jan 09, 2023
Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem

Benchmarking nearest neighbors Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem, but so far t

Erik Bernhardsson 3.2k Jan 03, 2023
Repository for Driving Style Recognition algorithms for Autonomous Vehicles

Driving Style Recognition Using Interval Type-2 Fuzzy Inference System and Multiple Experts Decision Making Created by Iago Pachêco Gomes at USP - ICM

Iago Gomes 9 Nov 28, 2022
Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"

Photo-Realistic-Super-Resoluton Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network" [Paper]

Harry Yang 199 Dec 01, 2022
Fast Differentiable Matrix Sqrt Root

Fast Differentiable Matrix Sqrt Root Geometric Interpretation of Matrix Square Root and Inverse Square Root This repository constains the official Pyt

YueSong 42 Dec 30, 2022
A Fast Knowledge Distillation Framework for Visual Recognition

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
OpenPCDet Toolbox for LiDAR-based 3D Object Detection.

OpenPCDet OpenPCDet is a clear, simple, self-contained open source project for LiDAR-based 3D object detection. It is also the official code release o

OpenMMLab 3.2k Dec 31, 2022
This repo contains the code and data used in the paper "Wizard of Search Engine: Access to Information Through Conversations with Search Engines"

Wizard of Search Engine: Access to Information Through Conversations with Search Engines by Pengjie Ren, Zhongkun Liu, Xiaomeng Song, Hongtao Tian, Zh

19 Oct 27, 2022
[NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning

SoCo [NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning By Fangyun Wei*, Yue Gao*, Zhirong Wu, Han Hu,

Yue Gao 139 Dec 14, 2022
Convert Apple NeuralHash model for CSAM Detection to ONNX.

Apple NeuralHash is a perceptual hashing method for images based on neural networks. It can tolerate image resize and compression.

Asuhariet Ygvar 1.5k Dec 31, 2022
StyleGAN2-ADA - Official PyTorch implementation

Need Help? If you’re new to StyleGAN2-ADA and looking to get started, please check out this video series from a course Lia Coleman and I taught in Oct

Derrick Schultz 217 Jan 04, 2023
An Intelligent Self-driving Truck System For Highway Transportation

Inceptio Intelligent Truck System An Intelligent Self-driving Truck System For Highway Transportation Note The code is still in development. OS requir

InceptioResearch 11 Jul 13, 2022
Radar-to-Lidar: Heterogeneous Place Recognition via Joint Learning

radar-to-lidar-place-recognition This page is the coder of a pre-print, implemented by PyTorch. If you have some questions on this project, please fee

Huan Yin 37 Oct 09, 2022
A multi-mode modulator for multi-domain few-shot classification (ICCV)

A multi-mode modulator for multi-domain few-shot classification (ICCV)

Yanbin Liu 8 Apr 28, 2022
시각 장애인을 위한 스마트 지팡이에 활용될 딥러닝 모델 (DL Model Repo)

SmartCane-DL-Model Smart Cane using semantic segmentation 참고한 Github repositoy 🔗 https://github.com/JunHyeok96/Road-Segmentation.git 데이터셋 🔗 https://

반드시 졸업한다 (Team Just Graduate) 4 Dec 03, 2021
This repository contains the code for the paper 'PARM: Paragraph Aggregation Retrieval Model for Dense Document-to-Document Retrieval' published at ECIR'22.

Paragraph Aggregation Retrieval Model (PARM) for Dense Document-to-Document Retrieval This repository contains the code for the paper PARM: A Paragrap

Sophia Althammer 33 Aug 26, 2022
FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware.

FIRM-AFL FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware. FIRM-AFL addresses two fundamental problems in IoT fuzzing. First, it

356 Dec 23, 2022
Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving

SalsaNext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving Abstract In this paper, we introduce SalsaNext f

308 Jan 04, 2023