HugsVision is a easy to use huggingface wrapper for state-of-the-art computer vision

Overview

drawing

PyPI version GitHub Issues Contributions welcome License: MIT Downloads

HugsVision is an open-source and easy to use all-in-one huggingface wrapper for computer vision.

The goal is to create a fast, flexible and user-friendly toolkit that can be used to easily develop state-of-the-art computer vision technologies, including systems for Image Classification, Semantic Segmentation, Object Detection, Image Generation, Denoising and much more.

⚠️ HugsVision is currently in beta. ⚠️

Quick installation

HugsVision is constantly evolving. New features, tutorials, and documentation will appear over time. HugsVision can be installed via PyPI to rapidly use the standard library. Moreover, a local installation can be used by those users than want to run experiments and modify/customize the toolkit. HugsVision supports both CPU and GPU computations. For most recipes, however, a GPU is necessary during training. Please note that CUDA must be properly installed to use GPUs.

Anaconda setup

conda create --name HugsVision python=3.6 -y
conda activate HugsVision

More information on managing environments with Anaconda can be found in the conda cheat sheet.

Install via PyPI

Once you have created your Python environment (Python 3.6+) you can simply type:

pip install hugsvision

Install with GitHub

Once you have created your Python environment (Python 3.6+) you can simply type:

git clone https://github.com/qanastek/HugsVision.git
cd HugsVision
pip install -r requirements.txt
pip install --editable .

Any modification made to the hugsvision package will be automatically interpreted as we installed it with the --editable flag.

Example Usage

Let's train a binary classifier that can distinguish people with or without Pneumothorax thanks to their radiography.

Steps:

  1. Move to the recipe directory cd recipes/pneumothorax/binary_classification/
  2. Download the dataset here ~779 MB.
  3. Transform the dataset into a directory based one, thanks to the process.py script.
  4. Train the model: python train_example_vit.py --imgs="./pneumothorax_binary_classification_task_data/" --name="pneumo_model_vit" --epochs=1
  5. Rename <MODEL_PATH>/config.json to <MODEL_PATH>/preprocessor_config.json in my case, the model is situated at the output path like ./out/MYVITMODEL/1_2021-08-10-00-53-58/model/
  6. Make a prediction: python predict.py --img="42.png" --path="./out/MYVITMODEL/1_2021-08-10-00-53-58/model/"

Models recipes

You can find all the currently available models or tasks under the recipes/ folder.

Training a Transformer Image Classifier to help radiologists detect Pneumothorax cases: A demonstration of how to train a Image Classifier Transformer model that can distinguish people with or without Pneumothorax thanks to their radiography with HugsVision.
Training a End-To-End Object Detection with Transformers to detect blood cells: A demonstration of how to train a E2E Object Detection Transformer model which can detect and identify blood cells with HugsVision.
Training a Transformer Image Classifier to help endoscopists: A demonstration of how to train a Image Classifier Transformer model that can help endoscopists to automate detection of various anatomical landmarks, phatological findings or endoscopic procedures in the gastrointestinal tract with HugsVision.
Training and using a TorchVision Image Classifier in 5 min to identify skin cancer: A fast and easy tutorial to train a TorchVision Image Classifier that can help dermatologist in their identification procedures Melanoma cases with HugsVision and HAM10000 dataset.

HuggingFace Spaces

You can try some of the models or tasks on HuggingFace thanks to theirs amazing spaces :

Model architectures

All the model checkpoints provided by 🤗 Transformers and compatible with our tasks can be seamlessly integrated from the huggingface.co model hub where they are uploaded directly by users and organizations.

Before starting implementing, please check if your model has an implementation in PyTorch by refering to this table.

🤗 Transformers currently provides the following architectures for Computer Vision:

  1. ViT (from Google Research, Brain Team) released with the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
  2. DeiT (from Facebook AI and Sorbonne University) released with the paper Training data-efficient image transformers & distillation through attention by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
  3. BEiT (from Microsoft Research) released with the paper BEIT: BERT Pre-Training of Image Transformers by Hangbo Bao, Li Dong and Furu Wei.
  4. DETR (from Facebook AI) released with the paper End-to-End Object Detection with Transformers by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov and Sergey Zagoruyko.

Build PyPi package

Build: python setup.py sdist bdist_wheel

Upload: twine upload dist/*

Citation

If you want to cite the tool you can use this:

@misc{HugsVision,
  title={HugsVision},
  author={Yanis Labrak},
  publisher={GitHub},
  journal={GitHub repository},
  howpublished={\url{https://github.com/qanastek/HugsVision}},
  year={2021}
}
Owner
Labrak Yanis
👨🏻‍🎓 Student in Master of Science in Computer Science, Avignon University 🇫🇷 🏛 Research Scientist - Machine Learning in Healthcare
Labrak Yanis
Official code for "Mean Shift for Self-Supervised Learning"

MSF Official code for "Mean Shift for Self-Supervised Learning" Requirements Python = 3.7.6 PyTorch = 1.4 torchvision = 0.5.0 faiss-gpu = 1.6.1 In

UMBC Vision 44 Nov 21, 2022
Additional environments compatible with OpenAI gym

Decentralized Control of Quadrotor Swarms with End-to-end Deep Reinforcement Learning A codebase for training reinforcement learning policies for quad

Zhehui Huang 40 Dec 06, 2022
All public open-source implementations of convnets benchmarks

convnet-benchmarks Easy benchmarking of all public open-source implementations of convnets. A summary is provided in the section below. Machine: 6-cor

Soumith Chintala 2.7k Dec 30, 2022
Code of Periodic Activation Functions Induce Stationarity

Periodic Activation Functions Induce Stationarity This repository is the official implementation of the methods in the publication: L. Meronen, M. Tra

AaltoML 12 Jun 07, 2022
A collection of differentiable SVD methods and also the official implementation of the ICCV21 paper "Why Approximate Matrix Square Root Outperforms Accurate SVD in Global Covariance Pooling?"

Differentiable SVD Introduction This repository contains: The official Pytorch implementation of ICCV21 paper Why Approximate Matrix Square Root Outpe

YueSong 32 Dec 25, 2022
An interactive DNN Model deployed on web that predicts the chance of heart failure for a patient with an accuracy of 98%

Heart Failure Predictor About A Web UI deployed Dense Neural Network Model Made using Tensorflow that predicts whether the patient is healthy or has c

Adit Ahmedabadi 0 Jan 09, 2022
Record radiologists' eye gaze when they are labeling images.

Record radiologists' eye gaze when they are labeling images. Read for installation, usage, and deep learning examples. Why use MicEye Versatile As a l

24 Nov 03, 2022
Python package for visualizing the loss landscape of parameterized quantum algorithms.

orqviz A Python package for easily visualizing the loss landscape of Variational Quantum Algorithms by Zapata Computing Inc. orqviz provides a collect

Zapata Computing, Inc. 75 Dec 30, 2022
Official implementation of the Neurips 2021 paper Searching Parameterized AP Loss for Object Detection.

Parameterized AP Loss By Chenxin Tao, Zizhang Li, Xizhou Zhu, Gao Huang, Yong Liu, Jifeng Dai This is the official implementation of the Neurips 2021

46 Jul 06, 2022
The DL Streamer Pipeline Zoo is a catalog of optimized media and media analytics pipelines.

The DL Streamer Pipeline Zoo is a catalog of optimized media and media analytics pipelines. It includes tools for downloading pipelines and their dependencies and tools for measuring their performace

8 Dec 04, 2022
Convenient tool for speeding up the intern/officer review process.

icpc-app-screen Convenient tool for speeding up the intern/officer applicant review process. Eliminates the pain from reading application responses of

1 Oct 30, 2021
A new version of the CIDACS-RL linkage tool suitable to a cluster computing environment.

Fully Distributed CIDACS-RL The CIDACS-RL is a brazillian record linkage tool suitable to integrate large amount of data with high accuracy. However,

Robespierre Pita 5 Nov 04, 2022
ProMP: Proximal Meta-Policy Search

ProMP: Proximal Meta-Policy Search Implementations corresponding to ProMP (Rothfuss et al., 2018). Overall this repository consists of two branches: m

Jonas Rothfuss 212 Dec 20, 2022
This repository collects project-relevant Isabelle/HOL formalizations.

Isabelle/HOL formalizations related to the AuReLeE project Formalization of Abstract Argumentation Frameworks See AbstractArgumentation folder for the

AuReLeE project 1 Sep 10, 2022
Source code for our EMNLP'21 paper 《Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning》

Child-Tuning Source code for EMNLP 2021 Long paper: Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning. 1. Environ

46 Dec 12, 2022
Encode and decode text application

Text Encoder and Decoder Encode and decode text in many ways using this application! Encode in: ASCII85 Base85 Base64 Base32 Base16 Url MD5 Hash SHA-1

Alice 1 Feb 12, 2022
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling @ INTERSPEECH 2021 Accepted

NU-Wave — Official PyTorch Implementation NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling Junhyeok Lee, Seungu Han @ MINDsLab Inc

MINDs Lab 242 Dec 23, 2022
PConv-Keras - Unofficial implementation of "Image Inpainting for Irregular Holes Using Partial Convolutions". Try at: www.fixmyphoto.ai

Partial Convolutions for Image Inpainting using Keras Keras implementation of "Image Inpainting for Irregular Holes Using Partial Convolutions", https

Mathias Gruber 871 Jan 05, 2023
PyTorch implementation of MulMON

MulMON This repository contains a PyTorch implementation of the paper: Learning Object-Centric Representations of Multi-object Scenes from Multiple Vi

NanboLi 16 Nov 03, 2022
Mesh Graphormer is a new transformer-based method for human pose and mesh reconsruction from an input image

MeshGraphormer ✨ ✨ This is our research code of Mesh Graphormer. Mesh Graphormer is a new transformer-based method for human pose and mesh reconsructi

Microsoft 251 Jan 08, 2023