Data-Driven Operational Space Control for Adaptive and Robust Robot Manipulation

Overview

NVIDIA Source Code License Python 3.7

OSCAR

Project Page | Paper

This repository contains the codebase used in OSCAR: Data-Driven Operational Space Control for Adaptive and Robust Robot Manipulation.

More generally, this codebase is a modular framework built upon IsaacGym, and intended to support future robotics research leveraging large-scale training.

Of note, this repo contains:

  • High-quality controller implementations of OSC, IK, and Joint-Based controllers that have been fully parallelized for PyTorch
  • Complex Robot Manipulation tasks for benchmarking learning algorithms
  • Modular structure enabling rapid prototyping of additional robots, controllers, and environments

Requirements

  • Linux machine
  • Conda
  • NVIDIA GPU + CUDA

Getting Started

First, clone this repo and initialize the submodules:

git clone https://github.com/NVlabs/oscar.git
cd oscar
git submodule update --init --recursive

Next, create a new conda environment to be used for this repo and activate the repo:

bash create_conda_env_oscar.sh
conda activate oscar

This will create a new conda environment named oscar and additional install some dependencies. Next, we need IsaacGym. This repo itself does not contain IsaacGym, but is compatible with any version >= preview 3.0.

Install and build IsaacGym HERE.

Once installed, navigate to the python directory and install the package to this conda environment:

(oscar) cd <ISAACGYM_REPO_PATH>/python
(oscar) pip install -e .

Now with IsaacGym installed, we can finally install this repo as a package:

(oscar) cd <OSCAR_REPO_PATH>
(oscar) pip install -e .

That's it!

Training

Provided are helpful scripts for running training, evaluation, and finetuning. These are found in the Examples directory. You can set the Task, Controller, and other parameters directly at the top of the example script. They should run out of the box, like so:

cd examples
bash train.sh

For evaluation (including zero-shot), you can modify and run:

bash eval.sh

For finetuning on the published out-of-distribution task settings using a pretrained model, you can modify and run:

bash finetune.sh

To pretrain the initial OSCAR base network, you can modify and run:

bash pretrain_oscar.sh

Reproducing Paper Results

We provide all of our final trained models used in our published results, found in trained_models section.

Adding Custom Modules

This repo is designed to be built upon and enable future large-scale robot learning simulation research. You can add your own custom controller by seeing an example controller like the OSC controller, your own custom robot agent by seeing an example agent like the Franka agent, and your own custom task by seeing an example task like the Push task.

License

Please check the LICENSE file. OSCAR may be used non-commercially, meaning for research or evaluation purposes only. For business inquiries, please contact [email protected].

Citation

Please cite OSCAR if you use this framework in your publications:

@inproceedings{wong2021oscar,
  title={OSCAR: Data-Driven Operational Space Control for Adaptive and Robust Robot Manipulation},
  author={Josiah Wong and Viktor Makoviychuk and Anima Anandkumar and Yuke Zhu},
  booktitle={arXiv preprint arXiv:2110.00704},
  year={2021}
}
House-GAN++: Generative Adversarial Layout Refinement Network towards Intelligent Computational Agent for Professional Architects

House-GAN++ Code and instructions for our paper: House-GAN++: Generative Adversarial Layout Refinement Network towards Intelligent Computational Agent

122 Dec 28, 2022
Script utilizando OpenCV e modelo Machine Learning para detectar o uso de máscaras.

Reconhecendo máscaras Este repositório contém um script em Python3 que reconhece se um rosto está ou não portando uma máscara! O código utiliza da bib

Maria Eduarda de Azevedo Silva 168 Oct 20, 2022
Create time-series datacubes for supervised machine learning with ICEYE SAR images.

ICEcube is a Python library intended to help organize SAR images and annotations for supervised machine learning applications. The library generates m

ICEYE Ltd 65 Jan 03, 2023
Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds."

DeltaConv [Paper] [Project page] Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds" by Ru

98 Nov 26, 2022
Anchor Retouching via Model Interaction for Robust Object Detection in Aerial Images

Anchor Retouching via Model Interaction for Robust Object Detection in Aerial Images In this paper, we present an effective Dynamic Enhancement Anchor

13 Dec 09, 2022
Main Results on ImageNet with Pretrained Models

This repository contains Pytorch evaluation code, training code and pretrained models for the following projects: SPACH (A Battle of Network Structure

Microsoft 151 Dec 14, 2022
Temporally Coherent GAN SIGGRAPH project.

TecoGAN This repository contains source code and materials for the TecoGAN project, i.e. code for a TEmporally COherent GAN for video super-resolution

Duc Linh Nguyen 2 Jan 18, 2022
banditml is a lightweight contextual bandit & reinforcement learning library designed to be used in production Python services.

banditml is a lightweight contextual bandit & reinforcement learning library designed to be used in production Python services. This library is developed by Bandit ML and ex-authors of Facebook's app

Bandit ML 51 Dec 22, 2022
DIVeR: Deterministic Integration for Volume Rendering

DIVeR: Deterministic Integration for Volume Rendering This repo contains the training and evaluation code for DIVeR. Setup python 3.8 pytorch 1.9.0 py

64 Dec 27, 2022
DL course co-developed by YSDA, HSE and Skoltech

Deep learning course This repo supplements Deep Learning course taught at YSDA and HSE @fall'21. For previous iteration visit the spring21 branch. Lec

Yandex School of Data Analysis 1.3k Dec 30, 2022
Offical implementation for "Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation".

Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021) by Qiming Hu, Xiaojie Guo. Dependencies P

Qiming Hu 31 Dec 20, 2022
AFLFast (extends AFL with Power Schedules)

AFLFast Power schedules implemented by Marcel Böhme [email protected]

Marcel Böhme 380 Jan 03, 2023
Fast Neural Representations for Direct Volume Rendering

Fast Neural Representations for Direct Volume Rendering Sebastian Weiss, Philipp Hermüller, Rüdiger Westermann This repository contains the code and s

Sebastian Weiss 20 Dec 03, 2022
Official Implementation for "ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement" https://arxiv.org/abs/2104.02699

ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement Recently, the power of unconditional image synthesis has significantly advanced th

967 Jan 04, 2023
Unofficial JAX implementations of Deep Learning models

JAX Models Table of Contents About The Project Getting Started Prerequisites Installation Usage Contributing License Contact About The Project The JAX

107 Jan 05, 2023
This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR)

CEDR This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR) introduced in the following paper

phoenix 3 Feb 27, 2022
PG2Net: Personalized and Group PreferenceGuided Network for Next Place Prediction

PG2Net PG2Net:Personalized and Group Preference Guided Network for Next Place Prediction Datasets Experiment results on two Foursquare check-in datase

Urban Mobility 5 Dec 20, 2022
(ICCV 2021) PyTorch implementation of Paper "Progressive Correspondence Pruning by Consensus Learning"

CLNet (ICCV 2021) PyTorch implementation of Paper "Progressive Correspondence Pruning by Consensus Learning" [project page] [paper] Citing CLNet If yo

Chen Zhao 22 Aug 26, 2022
Companion repo of the UCC 2021 paper "Predictive Auto-scaling with OpenStack Monasca"

Predictive Auto-scaling with OpenStack Monasca Giacomo Lanciano*, Filippo Galli, Tommaso Cucinotta, Davide Bacciu, Andrea Passarella 2021 IEEE/ACM 14t

Giacomo Lanciano 0 Dec 07, 2022
TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks

TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks [Paper] [Project Website] This repository holds the source code, pretra

Humam Alwassel 83 Dec 21, 2022