[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Overview

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22)

Picture1

Preview version paper of this work is available at: https://arxiv.org/abs/2112.02853

Qualitative results and comparisons with previous SOTAs are available at: https://youtu.be/X6BsS3t3wnc

This repo is a preview version. More details will be added later.

Abstract

Error propagation is a general but crucial problem in online semi-supervised video object segmentation. We aim to suppress error propagation through a correction mechanism with high reliability.

The key insight is to disentangle the correction from the conventional mask propagation process with reliable cues.

We introduce two modulators, propagation and correction modulators, to separately perform channel-wise re-calibration on the target frame embeddings according to local temporal correlations and reliable references respectively. Specifically, we assemble the modulators with a cascaded propagation-correction scheme. This avoids overriding the effects of the reliable correction modulator by the propagation modulator.

Although the reference frame with the ground truth label provides reliable cues, it could be very different from the target frame and introduce uncertain or incomplete correlations. We augment the reference cues by supplementing reliable feature patches to a maintained pool, thus offering more comprehensive and expressive object representations to the modulators. In addition, a reliability filter is designed to retrieve reliable patches and pass them in subsequent frames.

Our model achieves state-of-the-art performance on YouTube-VOS18/19 and DAVIS17-Val/Test benchmarks. Extensive experiments demonstrate that the correction mechanism provides considerable performance gain by fully utilizing reliable guidance.

Requirements

This docker image may contain some redundent packages. A more light-weight one will be generated later.

docker image: xxiaoh/vos:10.1-cudnn7-torch1.4_v3

Citation

If you find this work is useful for your research, please consider citing:

@misc{xu2021reliable,
  title={Reliable Propagation-Correction Modulation for Video Object Segmentation}, 
  author={Xiaohao Xu and Jinglu Wang and Xiao Li and Yan Lu},
  year={2021},
  eprint={2112.02853},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

Credit

CFBI: https://github.com/z-x-yang/CFBI

Deeplab: https://github.com/VainF/DeepLabV3Plus-Pytorch

GCT: https://github.com/z-x-yang/GCT

Acknowledgement

Firstly, the author would like to thank Rex for his insightful viewpoints about VOS during e-mail discussion! Also, this work is largely built upon the codebase of CFBI. Thanks for the author of CFBI to release such a wonderful code repo for further work to build upon!

Related impressive works in VOS

AOT [NeurIPS 2021]: https://github.com/z-x-yang/AOT

STCN [NeurIPS 2021]: https://github.com/hkchengrex/STCN

MiVOS [CVPR 2021]: https://github.com/hkchengrex/MiVOS

SSTVOS [CVPR 2021]: https://github.com/dukebw/SSTVOS

GraphMemVOS [ECCV 2020]: https://github.com/carrierlxk/GraphMemVOS

CFBI [ECCV 2020]: https://github.com/z-x-yang/CFBI

STM [ICCV 2019]: https://github.com/seoungwugoh/STM

FEELVOS [CVPR 2019]: https://github.com/kim-younghan/FEELVOS

Useful websites for VOS

The 1st Large-scale Video Object Segmentation Challenge: https://competitions.codalab.org/competitions/19544#learn_the_details

The 2nd Large-scale Video Object Segmentation Challenge - Track 1: Video Object Segmentation: https://competitions.codalab.org/competitions/20127#learn_the_details

The Semi-Supervised DAVIS Challenge on Video Object Segmentation @ CVPR 2020: https://competitions.codalab.org/competitions/20516#participate-submit_results

DAVIS: https://davischallenge.org/

YouTube-VOS: https://youtube-vos.org/

Papers with code for Semi-VOS: https://paperswithcode.com/task/semi-supervised-video-object-segmentation

Welcome to comments and discussions!!

Xiaohao Xu: [email protected]

Owner
Xiaohao Xu
Xiaohao Xu
Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition"

Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition", accepted at ACL 2021. For details of the model and experiments, please see our paper.

tricktreat 87 Dec 16, 2022
This repository contains a PyTorch implementation of "AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis".

AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis | Project Page | Paper | PyTorch implementation for the paper "AD-NeRF: Audio

551 Dec 29, 2022
Delving into Localization Errors for Monocular 3D Object Detection, CVPR'2021

Delving into Localization Errors for Monocular 3D Detection By Xinzhu Ma, Yinmin Zhang, Dan Xu, Dongzhan Zhou, Shuai Yi, Haojie Li, Wanli Ouyang. Intr

XINZHU.MA 124 Jan 04, 2023
[NAACL & ACL 2021] SapBERT: Self-alignment pretraining for BERT.

SapBERT: Self-alignment pretraining for BERT This repo holds code for the SapBERT model presented in our NAACL 2021 paper: Self-Alignment Pretraining

Cambridge Language Technology Lab 104 Dec 07, 2022
Fuzzing the Kernel Using Unicornafl and AFL++

Unicorefuzz Fuzzing the Kernel using UnicornAFL and AFL++. For details, skim through the WOOT paper or watch this talk at CCCamp19. Is it any good? ye

Security in Telecommunications 283 Dec 26, 2022
Author's PyTorch implementation of TD3+BC, a simple variant of TD3 for offline RL

A Minimalist Approach to Offline Reinforcement Learning TD3+BC is a simple approach to offline RL where only two changes are made to TD3: (1) a weight

Scott Fujimoto 193 Dec 23, 2022
Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Paddle-PANet 目录 结果对比 论文介绍 快速安装 结果对比 CTW1500 Method Backbone Fine

7 Aug 08, 2022
Deduplicating Training Data Makes Language Models Better

Deduplicating Training Data Makes Language Models Better This repository contains code to deduplicate language model datasets as descrbed in the paper

Google Research 431 Dec 27, 2022
PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 20

Zhengqi Li 585 Jan 04, 2023
Official implementation of deep-multi-trajectory-based single object tracking (IEEE T-CSVT 2021).

DeepMTA_PyTorch Officical PyTorch Implementation of "Dynamic Attention-guided Multi-TrajectoryAnalysis for Single Object Tracking", Xiao Wang, Zhe Che

Xiao Wang(王逍) 7 Dec 03, 2022
NeurIPS 2021 Datasets and Benchmarks Track

AP-10K: A Benchmark for Animal Pose Estimation in the Wild Introduction | Updates | Overview | Download | Training Code | Key Questions | License Intr

AP-10K 82 Dec 11, 2022
Sample Prior Guided Robust Model Learning to Suppress Noisy Labels

PGDF This repo is the official implementation of our paper "Sample Prior Guided Robust Model Learning to Suppress Noisy Labels ". Citation If you use

CVSM Group - email: <a href=[email protected]"> 22 Dec 23, 2022
Unsupervised phone and word segmentation using dynamic programming on self-supervised VQ features.

Unsupervised Phone and Word Segmentation using Vector-Quantized Neural Networks Overview Unsupervised phone and word segmentation on speech data is pe

Herman Kamper 13 Dec 11, 2022
Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. CVPR 2018

Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning Tensorflow code and models for the paper: Large Scale Fine-Grained Categ

Yin Cui 187 Oct 01, 2022
Official public repository of paper "Intention Adaptive Graph Neural Network for Category-Aware Session-Based Recommendation"

Intention Adaptive Graph Neural Network (IAGNN) This is the official repository of paper Intention Adaptive Graph Neural Network for Category-Aware Se

9 Nov 22, 2022
Universal Probability Distributions with Optimal Transport and Convex Optimization

Sylvester normalizing flows for variational inference Pytorch implementation of Sylvester normalizing flows, based on our paper: Sylvester normalizing

Rianne van den Berg 172 Dec 13, 2022
Self-supervised learning (SSL) is a method of machine learning

Self-supervised learning (SSL) is a method of machine learning. It learns from unlabeled sample data. It can be regarded as an intermediate form between supervised and unsupervised learning.

Ashish Patel 4 May 26, 2022
Official implementation of the paper Label-Efficient Semantic Segmentation with Diffusion Models

Label-Efficient Semantic Segmentation with Diffusion Models Official implementation of the paper Label-Efficient Semantic Segmentation with Diffusion

Yandex Research 355 Jan 06, 2023
A concise but complete implementation of CLIP with various experimental improvements from recent papers

x-clip (wip) A concise but complete implementation of CLIP with various experimental improvements from recent papers Install $ pip install x-clip Usag

Phil Wang 515 Dec 26, 2022
JAXMAPP: JAX-based Library for Multi-Agent Path Planning in Continuous Spaces

JAXMAPP: JAX-based Library for Multi-Agent Path Planning in Continuous Spaces JAXMAPP is a JAX-based library for multi-agent path planning (MAPP) in c

OMRON SINIC X 24 Dec 28, 2022