A concise but complete implementation of CLIP with various experimental improvements from recent papers

Overview

x-clip (wip)

A concise but complete implementation of CLIP with various experimental improvements from recent papers

Install

$ pip install x-clip

Usage

import torch
from x_clip import CLIP

clip = CLIP(
    dim_text = 512,
    dim_image = 512,
    dim_latent = 512,
    num_text_tokens = 10000,
    text_enc_depth = 6,
    text_seq_len = 256,
    text_heads = 8,
    num_visual_tokens = 512,
    visual_enc_depth = 6,
    visual_image_size = 256,
    visual_patch_size = 32,
    visual_heads = 8,
    use_all_token_embeds = True   # whether to use fine-grained contrastive learning (FILIP)
)

text = torch.randint(0, 10000, (4, 256))
images = torch.randn(4, 3, 256, 256)
mask = torch.ones_like(text).bool()

loss = clip(text, images, text_mask = mask, return_loss = True)
loss.backward()

Citations

@misc{radford2021learning,
    title   = {Learning Transferable Visual Models From Natural Language Supervision}, 
    author  = {Alec Radford and Jong Wook Kim and Chris Hallacy and Aditya Ramesh and Gabriel Goh and Sandhini Agarwal and Girish Sastry and Amanda Askell and Pamela Mishkin and Jack Clark and Gretchen Krueger and Ilya Sutskever},
    year    = {2021},
    eprint  = {2103.00020},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
@misc{yao2021filip,
    title   = {FILIP: Fine-grained Interactive Language-Image Pre-Training}, 
    author  = {Lewei Yao and Runhui Huang and Lu Hou and Guansong Lu and Minzhe Niu and Hang Xu and Xiaodan Liang and Zhenguo Li and Xin Jiang and Chunjing Xu},
    year    = {2021},
    eprint  = {2111.07783},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
Comments
  • Model forward outputs to text/image similarity score

    Model forward outputs to text/image similarity score

    Any insight on how to take the image/text embeddings (or nominal model forward output) to achieve a simple similarity score as done in the huggingface implementation? HF example here

    In the original paper I see the dot products of the image/text encoder outputs were used, but here I was having troubles with the dimensions on the outputs.

    opened by paulcjh 12
  • Using different encoders in CLIP

    Using different encoders in CLIP

    Hi, I am wondering if it was possible to use different encoders in CLIP ? For images not using vit but resnet for example. And is it possible to replace the text encoder by a features encoder for example ? If I have a vector of features for a given image and I want to use x-clip how should I do that ? I have made a code example that doesnt seems to work, here is what I did:

    import torch
    from x_clip import CLIP
    import torch.nn as nn
    from torchvision import models
    
    class Image_Encoder(torch.nn.Module):
        #output size is (bs,512)
        def __init__(self):
            super(Image_Encoder, self).__init__()
            self.model_pre = models.resnet18(pretrained=False)
            self.base=nn.Sequential(*list(self.model_pre.children()))
            self.base[0]=nn.Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
            self.resnet=self.base[:-1]
    
        def forward(self, x):
            out=self.resnet(x).squeeze()
            return out
    
    
    class features_encoder(torch.nn.Module):
        #output size is (bs,512)
        def __init__(self):
            super(features_encoder, self).__init__()
            self.model =nn.Linear(2048,512)
    
        def forward(self, x):
            out=self.model(x)
            return out
    
    images_encoder=Image_Encoder()
    features_encoder=features_encoder()
    
    clip = CLIP(
        image_encoder = images_encoder,
        text_encoder = features_encoder,
        dim_image = 512,
        dim_text = 512,
        dim_latent = 512
    )
    
    features= torch.randn(4,2048)
    images = torch.randn(4, 3, 256, 256)
    
    loss = clip(features, images, return_loss = True)
    loss.backward()
    

    but I got the following error : forward() takes 2 positional arguments but 3 were given

    Thanks

    opened by ethancohen123 8
  • Visual ssl with channels different than 3

    Visual ssl with channels different than 3

    Hi, seems to be a bug when trying to use visual ssl with a different number of channel than 3 . I think the error came from the visual ssl type ~row 280 here:

    #send a mock image tensor to instantiate parameters self.forward(torch.randn(1, 3, image_size, image_size))

    opened by ethancohen123 4
  • Allow other types of visual  SSL when initiating CLIP

    Allow other types of visual SSL when initiating CLIP

    In the following code as part of CLIP.__init__

            if use_visual_ssl:
                if visual_ssl_type == 'simsiam':
                    ssl_type = SimSiam
                elif visual_ssl_type == 'simclr':
                    ssl_type = partial(SimCLR, temperature = simclr_temperature)
                else:
                    raise ValueError(f'unknown visual_ssl_type')
    
                self.visual_ssl = ssl_type(
                    self.visual_transformer,
                    image_size = visual_image_size,
                    hidden_layer = visual_ssl_hidden_layer
                )
    

    the visual self-supervised learning is hardcoded. I would suggest changing this to accept the visual SSL module as an argument when instantiating CLIP to allow flexibility in the same manner as it does for the image encoder and text encoder.

    Example:

    barlow = BarlowTwins(augmentatation_fns)
    clip = CLIP(..., visual_ssl=barlow)
    
    opened by Froskekongen 4
  • Extract Text and Image Latents

    Extract Text and Image Latents

    Hi, in the current implementation we can only extract text and image embedding (by set return_encodings=True) which are obtained before applying latent linear layers. Isn't it better to add an option to extract latent embeddings? Another importance of this is that with the current code, it is impossible to extract the similarity matrix between a batch of images and a batch of text.

    opened by mmsamiei 2
  • NaN with mock data

    NaN with mock data

    Hi lucidrains,

    Try this and it will NaN within 100 steps (latest Github code). The loss looks fine before NaN.

    import torch
    torch.backends.cudnn.allow_tf32 = True
    torch.backends.cuda.matmul.allow_tf32 = True    
    torch.backends.cudnn.benchmark = True
    
    import random
    import numpy as np
    seed = 42
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    
    num_text_tokens = 10000
    batch_sz = 12
    text_seq_len = 256
    visual_image_size = 256
    
    # mock data
    
    data_sz = 1000
    all_text = torch.randint(0, num_text_tokens, (data_sz, text_seq_len)).cuda()
    all_images = torch.randn(data_sz, 3, visual_image_size, visual_image_size).cuda()
    
    text = torch.zeros((batch_sz, text_seq_len), dtype=torch.long).cuda()
    images = torch.zeros((batch_sz, 3, visual_image_size, visual_image_size)).cuda()
    
    ##########################################################################################
    
    import wandb
    import datetime
    wandb.init(project="Test", name=datetime.datetime.today().strftime('%Y-%m-%d-%H-%M-%S'), save_code=False)
    
    from x_clip import CLIP
    
    clip = CLIP(
        dim_text = 512,
        dim_image = 512,
        dim_latent = 512,
        num_text_tokens = num_text_tokens,
        text_enc_depth = 6,
        text_seq_len = text_seq_len,
        text_heads = 8,
        visual_enc_depth = 6,
        visual_image_size = visual_image_size,
        visual_patch_size = 32,
        visual_heads = 8,
        use_all_token_embeds = False,           # whether to use fine-grained contrastive learning (FILIP)
        decoupled_contrastive_learning = True,  # use decoupled contrastive learning (DCL) objective function, removing positive pairs from the denominator of the InfoNCE loss (CLOOB + DCL)
        extra_latent_projection = True,         # whether to use separate projections for text-to-image vs image-to-text comparisons (CLOOB)
        use_visual_ssl = True,                  # whether to do self supervised learning on iages
        visual_ssl_type = 'simclr',             # can be either 'simclr' or 'simsiam', depending on using DeCLIP or SLIP
        use_mlm = False,                        # use masked language learning (MLM) on text (DeCLIP)
        text_ssl_loss_weight = 0.05,            # weight for text MLM loss
        image_ssl_loss_weight = 0.05            # weight for image self-supervised learning loss
    ).cuda()
    
    optimizer = torch.optim.Adam(clip.parameters(), lr=1e-4, betas=(0.9, 0.99))
    
    for step in range(999999):
        for i in range(batch_sz):
            data_id = random.randrange(0, data_sz - 1)
            text[i] = all_text[data_id]
            images[i] = all_images[data_id]
    
        loss = clip(
            text,
            images,
            freeze_image_encoder = False,   # whether to freeze image encoder if using a pretrained image net, proposed by LiT paper
            return_loss = True              # needs to be set to True to return contrastive loss
        )
        clip.zero_grad()
        loss.backward()
        torch.nn.utils.clip_grad_norm_(clip.parameters(), 1.0)
        optimizer.step()
    
        now_loss = loss.item()
        wandb.log({"loss": now_loss}, step = step)
        print(step, now_loss)
    
        if 'nan' in str(now_loss):
            break
    
    opened by BlinkDL 1
  • Unable to train to convergence (small dataset)

    Unable to train to convergence (small dataset)

    Hi nice work with x-clip. Hoping to play around with it and eventually combine it into your DALLE2 work.

    Currently having some trouble training on roughly 30k image-text pairs. Loss eventually goes negative and starts producing Nan's. I've dropped learning rate down (1e-4) and I'm clipping gradients (max_norm=0.5).

    Any thoughts on what are sane training params/configs on such a small dataset using x-clip?

    opened by jacobwjs 9
Releases(0.12.0)
Owner
Phil Wang
Working with Attention. It's all we need
Phil Wang
Decentralized Reinforcment Learning: Global Decision-Making via Local Economic Transactions (ICML 2020)

Decentralized Reinforcement Learning This is the code complementing the paper Decentralized Reinforcment Learning: Global Decision-Making via Local Ec

40 Oct 30, 2022
Pytorch code for semantic segmentation using ERFNet

ERFNet (PyTorch version) This code is a toolbox that uses PyTorch for training and evaluating the ERFNet architecture for semantic segmentation. For t

Edu 394 Jan 01, 2023
PyTorch code for 'Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning'

Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning This repository is for EMSRDPN introduced in the foll

7 Feb 10, 2022
This is the second place solution for : UmojaHack Africa 2022: African Snake Antivenom Binding Challenge

UmojaHack-Africa-2022-African-Snake-Antivenom-Binding-Challenge This is the second place solution for : UmojaHack Africa 2022: African Snake Antivenom

Mami Mokhtar 10 Dec 03, 2022
Beyond Image to Depth: Improving Depth Prediction using Echoes (CVPR 2021)

Beyond Image to Depth: Improving Depth Prediction using Echoes (CVPR 2021) Kranti Kumar Parida, Siddharth Srivastava, Gaurav Sharma. We address the pr

Kranti Kumar Parida 33 Jun 27, 2022
Differentiable Surface Triangulation

Differentiable Surface Triangulation This is our implementation of the paper Differentiable Surface Triangulation that enables optimization for any pe

61 Dec 07, 2022
Real-time object detection on Android using the YOLO network with TensorFlow

TensorFlow YOLO object detection on Android Source project android-yolo is the first implementation of YOLO for TensorFlow on an Android device. It is

Nataniel Ruiz 624 Jan 03, 2023
Proto-RL: Reinforcement Learning with Prototypical Representations

Proto-RL: Reinforcement Learning with Prototypical Representations This is a PyTorch implementation of Proto-RL from Reinforcement Learning with Proto

Denis Yarats 74 Dec 06, 2022
Omniverse sample scripts - A guide for developing with Python scripts on NVIDIA Ominverse

Omniverse sample scripts ここでは、NVIDIA Omniverse ( https://www.nvidia.com/ja-jp/om

ft-lab (Yutaka Yoshisaka) 37 Nov 17, 2022
Perform Linear Classification with Multi-way Data

MultiwayClassification This is an R package to perform linear classification for data with multi-way structure. The distance-weighted discrimination (

Eric F. Lock 2 Dec 15, 2020
Code release for "Self-Tuning for Data-Efficient Deep Learning" (ICML 2021)

Self-Tuning for Data-Efficient Deep Learning This repository contains the implementation code for paper: Self-Tuning for Data-Efficient Deep Learning

THUML @ Tsinghua University 101 Dec 11, 2022
FindFunc is an IDA PRO plugin to find code functions that contain a certain assembly or byte pattern, reference a certain name or string, or conform to various other constraints.

FindFunc: Advanced Filtering/Finding of Functions in IDA Pro FindFunc is an IDA Pro plugin to find code functions that contain a certain assembly or b

213 Dec 17, 2022
[ICLR 2021] HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark

HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark Accepted as a spotlight paper at ICLR 2021. Table of content File structure Prerequi

72 Jan 03, 2023
TLoL (Python Module) - League of Legends Deep Learning AI (Research and Development)

TLoL-py - League of Legends Deep Learning Library TLoL-py is the Python component of the TLoL League of Legends deep learning library. It provides a s

7 Nov 29, 2022
Revisiting Temporal Alignment for Video Restoration

Revisiting Temporal Alignment for Video Restoration [arXiv] Kun Zhou, Wenbo Li, Liying Lu, Xiaoguang Han, Jiangbo Lu We provide our results at Google

52 Dec 25, 2022
Software that can generate photos from paintings, turn horses into zebras, perform style transfer, and more.

CycleGAN PyTorch | project page | paper Torch implementation for learning an image-to-image translation (i.e. pix2pix) without input-output pairs, for

Jun-Yan Zhu 11.5k Dec 30, 2022
SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021)

SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021) PyTorch implementation of SnapMix | paper Method Overview Cite

DavidHuang 126 Dec 30, 2022
Time Series Cross-Validation -- an extension for scikit-learn

TSCV: Time Series Cross-Validation This repository is a scikit-learn extension for time series cross-validation. It introduces gaps between the traini

Wenjie Zheng 222 Jan 01, 2023
Look Who’s Talking: Active Speaker Detection in the Wild

Look Who's Talking: Active Speaker Detection in the Wild Dependencies pip install -r requirements.txt In addition to the Python dependencies, ffmpeg

Clova AI Research 60 Dec 08, 2022
Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021)

Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021) PyTorch implementation of Learning RAW-to-sRGB Mappings with Inaccurat

Zhilu Zhang 53 Dec 20, 2022