Time Series Cross-Validation -- an extension for scikit-learn

Overview

Downloads Build Status codecov DOI

TSCV: Time Series Cross-Validation

This repository is a scikit-learn extension for time series cross-validation. It introduces gaps between the training set and the test set, which mitigates the temporal dependence of time series and prevents information leakage.

Installation

pip install tscv

or

conda install -c conda-forge tscv

Usage

This extension defines 3 cross-validator classes and 1 function:

  • GapLeavePOut
  • GapKFold
  • GapRollForward
  • gap_train_test_split

The three classes can all be passed, as the cv argument, to scikit-learn functions such as cross-validate, cross_val_score, and cross_val_predict, just like the native cross-validator classes.

The one function is an alternative to the train_test_split function in scikit-learn.

Examples

The following example uses GapKFold instead of KFold as the cross-validator.

import numpy as np
from sklearn import datasets
from sklearn import svm
from sklearn.model_selection import cross_val_score
from tscv import GapKFold

iris = datasets.load_iris()
clf = svm.SVC(kernel='linear', C=1)

# use GapKFold as the cross-validator
cv = GapKFold(n_splits=5, gap_before=5, gap_after=5)
scores = cross_val_score(clf, iris.data, iris.target, cv=cv)

The following example uses gap_train_test_split to split the data set into the training set and the test set.

import numpy as np
from tscv import gap_train_test_split

X, y = np.arange(20).reshape((10, 2)), np.arange(10)
X_train, X_test, y_train, y_test = gap_train_test_split(X, y, test_size=2, gap_size=2)

Contributing

  • Report bugs in the issue tracker
  • Express your use cases in the issue tracker

Documentations

Acknowledgments

  • I would like to thank Jeffrey Racine and Christoph Bergmeir for the helpful discussion.

License

BSD-3-Clause

Citation

Wenjie Zheng. (2021). Time Series Cross-Validation (TSCV): an extension for scikit-learn. Zenodo. http://doi.org/10.5281/zenodo.4707309

@software{zheng_2021_4707309,
  title={{Time Series Cross-Validation (TSCV): an extension for scikit-learn}},
  author={Zheng, Wenjie},
  month={april},
  year={2021},
  publisher={Zenodo},
  doi={10.5281/zenodo.4707309},
  url={http://doi.org/10.5281/zenodo.4707309}
}
Comments
  • Make it work with cross_val_predict

    Make it work with cross_val_predict

    Is it possible to somehow make the CV work with cross_val_predict function. Fore example, if I try:

    cv = GapWalkForward(n_splits=3, gap_size=1, test_size=2)
    cross_val_predict(estimator=SGDClassifier(), X=X_sample, y=y_bin_sample, cv=cv, n_jobs=6)
    

    it returns an error

    ValueError: cross_val_predict only works for partitions

    but I would like to have predictions so I can make consfusion matrx and other statistics.

    Is it possible to make it work with your cross-validators?

    opened by MislavSag 8
  • Documentation

    Documentation

    Documentation and examples do not address the splitting of data set into training and test sets.

    If using one of the cross validators, does the data set need to be sorted in time order? Is there way to designate a datetime column so the class understands on what basis to sequentially split data?

    opened by mksamelson 3
  • split.py depends on deprecated / newly private method `_safe_indexing` in scikit-learn 0.24.0

    split.py depends on deprecated / newly private method `_safe_indexing` in scikit-learn 0.24.0

    Just flagging a minor issue:

    We found this after poetry update-ing our dependencies, inadvertently bumping scikit-learn to 0.24.0. This broke code we have that uses tscv

    relevant scikit-learn source-code from version 0.23.0 https://github.com/scikit-learn/scikit-learn/blob/0.23.0/sklearn/utils/init.py#L274-L275

    The method has been made private in scikit-learn 0.24.0: https://github.com/scikit-learn/scikit-learn/blob/0.24.0/sklearn/utils/init.py#L271

    I did not investigate further, we pinned scikit-learn to 0.23.0 and that's OK for now, but some refactoring may be in order to move off the private method.

    opened by rob-sokolowski 3
  • Error when Importing TSCV Gapwalkforward

    Error when Importing TSCV Gapwalkforward

    Using TSCV Gapwalkforward successfully with Python 3.7.

    Suddenly getting following error:

    ImportError Traceback (most recent call last) in 41 #Modeling 42 ---> 43 from tscv import GapWalkForward 44 from sklearn.utils import shuffle 45 from sklearn.model_selection import KFold

    ~\Anaconda3\envs\py37\lib\site-packages\tscv_init_.py in ----> 1 from .split import GapCrossValidator 2 from .split import GapLeavePOut 3 from .split import GapKFold 4 from .split import GapWalkForward 5 from .split import gap_train_test_split

    ~\Anaconda3\envs\py37\lib\site-packages\tscv\split.py in 7 8 import numpy as np ----> 9 from sklearn.utils import indexable, safe_indexing 10 from sklearn.utils.validation import _num_samples 11 from sklearn.base import _pprint

    ImportError: cannot import name 'safe_indexing' from 'sklearn.utils'

    Any insight? I get this when simply importing Gapwalkforward.

    opened by mksamelson 2
  • GapWalkForward Issue with Scikit-learn 0.24.1

    GapWalkForward Issue with Scikit-learn 0.24.1

    When I upgrade to Scikit-learn 0.24.1 I get an issue:

    cannot import name 'safe_indexing' from 'sklearn.utils'

    This appears to be a change within scikit-learn as indicated here:

    https://stackoverflow.com/questions/65602076/yellowbrick-importerror-cannot-import-name-safe-indexing-from-sklearn-utils

    No issue using scikit-learn 0.23.2

    opened by mksamelson 2
  • Release 0.0.4 for GridSearch compat

    Release 0.0.4 for GridSearch compat

    Would it be possible to issue a new release on PyPI to include the latest changes from this commit which aligns the get_n_splits method signature with the abstract method signature required by GridSearchCV?

    opened by wderose 2
  • Warning once is not enough

    Warning once is not enough

    https://github.com/WenjieZ/TSCV/blob/f8b832fab1dca0e2d2d46029308c2d06eef8b858/tscv/split.py#L253

    This warning should appear for every occurrence. Use standard output instead.

    opened by WenjieZ 1
  • Retrained version of GapWalkForward: GapRollForward

    Retrained version of GapWalkForward: GapRollForward

    The current implementation is based on legacy K-Fold cross-validation requiring an explicit value for the n_splits parameter. It puts the burden of calculating desired value of n_splits on the user.

    A better implementation should allow the user to initiate a GapWalkForward class without specifying the value for n_splits. Instead, it can deduct the right value through the other inputs.

    It is theoretically desirable to keep both channels of kickstarting a GapWalkForward class. In practice, however, it is hard to maintain both within a single class. Therefore, I decide to ~~deprecate the n_splits channel~~ implement a new class dubbed GapRollForward in v0.1.0 -- the version after the next.

    opened by WenjieZ 1
  • Changed GapWalkForward.get_n_splits to match abstract method signatur…

    Changed GapWalkForward.get_n_splits to match abstract method signatur…

    …e. Now works with GridSearchCV. Otherwise using GapWalkForward as the cross validation class passed to GridSearchCV will fail with "TypeError: get_n_splits() takes 1 positional argument but 4 were given."

    opened by lawsonmcw 1
  • Import error with latest sklearn version

    Import error with latest sklearn version

    Hi guys, this issue occured after the upgrade to 1.1.3

    ImportError: cannot import name '_pprint' from 'sklearn.base'

    /.venv/lib/python3.10/site-packages/tscv/_split.py:19 in      │
    │ <module>                                                                                         │
    │                                                                                                  │
    │    16 import numpy as np                                                                         │
    │    17 from sklearn.utils import indexable                                                        │
    │    18 from sklearn.utils.validation import _num_samples, check_consistent_length                 │
    │ ❱  19 from sklearn.base import _pprint                                                           │
    │    20 from sklearn.utils import _safe_indexing                                                   │
    │    21                                                                                            │
    │    22                                       
    

    Could you please fix it ?

    Kind regards, Jim

    opened by teneon 1
  • Consistently use the test sets as reference for `gap_before` and `gap_after`

    Consistently use the test sets as reference for `gap_before` and `gap_after`

    There are two ways of defining a derived cross-validator. One is to redefine _iter_test_indices or _iter_test_masks (test viewpoint), and the other is to redefine _iter_train_masks or _iter_train_indices (train viewpoint).

    Currently, these two methods assign different semantic meanings to the parameters gap_before and gap_after. The test viewpoint uses the test sets as the reference:

    train    gap_before    test    gap_after    train
    

    The train viewpoint uses the training sets as the reference:

    test    gap_before    train    gap_after    test
    

    This diverged behavior is ~~not intended~~ inappropriate. The package should insist on the test viewpoint, and hence this PR. It will be enforced in v0.2.

    I don't think this issue has touched any users, for the derived classes in this package use _iter_test_indices exclusively (test viewpoint). No users have reported this issue either. If you suspect that you have been affected by it, please reply to this PR.

    opened by WenjieZ 1
  • time boost in folds generation

    time boost in folds generation

    With contiguous test sets:

    cv_orig = GapKFold(n_splits=5, gap_before=1, gap_after=1)
    
    for train_index, test_index in cv_orig.split(np.arange(10)):
        print("TRAIN:", train_index, "TEST:", test_index)
    
    
    ... TRAIN: [3 4 5 6 7 8 9] TEST: [0 1]
    ... TRAIN: [0 5 6 7 8 9] TEST: [2 3]
    ... TRAIN: [0 1 2 7 8 9] TEST: [4 5]
    ... TRAIN: [0 1 2 3 4 9] TEST: [6 7]
    ... TRAIN: [0 1 2 3 4 5 6] TEST: [8 9]
    
    cv_opt = GapKFold(n_splits=5, gap_before=1, gap_after=1)
    
    for train_index, test_index in cv_opt.split(np.arange(10)):
        print("TRAIN:", train_index, "TEST:", test_index)
    
    
    ... TRAIN: [3 4 5 6 7 8 9] TEST: [0 1]
    ... TRAIN: [0 5 6 7 8 9] TEST: [2 3]
    ... TRAIN: [0 1 2 7 8 9] TEST: [4 5]
    ... TRAIN: [0 1 2 3 4 9] TEST: [6 7]
    ... TRAIN: [0 1 2 3 4 5 6] TEST: [8 9]
    
    %%timeit
    folds = list(cv_orig.split(np.arange(10000)))
    
    
    ... 1.21 s ± 37.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
    
    %%timeit
    folds = list(cv_opt.split(np.arange(10000)))
    
    
    ... 4.74 ms ± 44.9 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
    

    With uncontiguous test sets:

    cv_orig = _XXX_(_xxx_, gap_before=1, gap_after=1)
    
    for train_index, test_index in cv_orig.split(np.arange(10)):
        print("TRAIN:", train_index, "TEST:", test_index)
    
    
    ... TRAIN: [5 6 7 8 9] TEST: [0 1 2 3]
    ... TRAIN: [7 8 9] TEST: [0 1 4 5]
    ... TRAIN: [3 4 9] TEST: [0 1 6 7]
    ... TRAIN: [3 4 5 6] TEST: [0 1 8 9]
    ... TRAIN: [0 7 8 9] TEST: [2 3 4 5]
    ... TRAIN: [0 9] TEST: [2 3 6 7]
    ... TRAIN: [0 5 6] TEST: [2 3 8 9]
    ... TRAIN: [0 1 2 9] TEST: [4 5 6 7]
    ... TRAIN: [0 1 2] TEST: [4 5 8 9]
    ... TRAIN: [0 1 2 3 4] TEST: [6 7 8 9]
    
    cv_opt = _XXX_(_xxx_, gap_before=1, gap_after=1)
    
    for train_index, test_index in cv_opt.split(np.arange(10)):
        print("TRAIN:", train_index, "TEST:", test_index)
    
    
    ... TRAIN: [5 6 7 8 9] TEST: [0 1 2 3]
    ... TRAIN: [7 8 9] TEST: [0 1 4 5]
    ... TRAIN: [3 4 9] TEST: [0 1 6 7]
    ... TRAIN: [3 4 5 6] TEST: [0 1 8 9]
    ... TRAIN: [0 7 8 9] TEST: [2 3 4 5]
    ... TRAIN: [0 9] TEST: [2 3 6 7]
    ... TRAIN: [0 5 6] TEST: [2 3 8 9]
    ... TRAIN: [0 1 2 9] TEST: [4 5 6 7]
    ... TRAIN: [0 1 2] TEST: [4 5 8 9]
    ... TRAIN: [0 1 2 3 4] TEST: [6 7 8 9]
    
    %%timeit
    folds = list(cv_orig.split(np.arange(10000)))
    
    ... 1.23 s ± 75.5 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
    
    %%timeit
    folds = list(cv_opt.split(np.arange(10000)))
    
    ... 4.78 ms ± 49.8 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
    
    opened by aldder 3
  • add CombinatorialGapKFold

    add CombinatorialGapKFold

    From "Advances in Financial Machine Learning" book by Marcos López de Prado the implemented version of Combinatorial Cross Validation with Purging and Embargoing

    image

    explaining video: https://www.youtube.com/watch?v=hDQssGntmFA

    opened by aldder 3
  • Implement Rep-Holdout

    Implement Rep-Holdout

    Thank you for this repository and the implemented CV-methods; especially GapRollForward. I was looking for exactly this package.

    I was wondering if you are interested in implementing another CV-Method for time series, called Rep-Holdout. It is used in this evaluation paper (https://arxiv.org/abs/1905.11744) and has good performance compared to all other CV-methods - some of which you have implemented here.

    As I understand it, it is somewhat like sklearn.model_selection.TimeSeriesSplit but with a randomized selection of all possible folds. Here is the description from the paper as an image:

    Unbenannt


    The authors provided code in R but it is written very differently than how it needs to look in Python. I adapted your functions to implement it in python but I am not the best coder and it really only serves my purpose of tuning a specific model. Seeing as the performance of Rep-Holdout is good and -to me at least - it makes sense for time series cross validation, maybe you are interested in adding this function to your package?

    opened by georgeblck 8
  • Intution on setting number of gaps

    Intution on setting number of gaps

    If for example, I have data without gaps, when and why would I still create a break between my train and validation? I have seen the argument for setting gaps when the period that needs to be predicted may be N days after the train. Are there other reasons? And if so, what is the intuition on knowing how many gaps to include before/after the training set?

    opened by tyokota 0
Releases(v0.1.2)
Owner
Wenjie Zheng
Statistical Learning Solution Expert
Wenjie Zheng
Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts

t5-japanese Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts. The following is a list of models that

Kimio Kuramitsu 1 Dec 13, 2021
Racing line optimization algorithm in python that uses Particle Swarm Optimization.

Racing Line Optimization with PSO This repository contains a racing line optimization algorithm in python that uses Particle Swarm Optimization. Requi

Parsa Dahesh 6 Dec 14, 2022
Continual Learning of Long Topic Sequences in Neural Information Retrieval

ContinualPassageRanking Repository for the paper "Continual Learning of Long Topic Sequences in Neural Information Retrieval". In this repository you

0 Apr 12, 2022
Implementation of self-attention mechanisms for general purpose. Focused on computer vision modules. Ongoing repository.

Self-attention building blocks for computer vision applications in PyTorch Implementation of self attention mechanisms for computer vision in PyTorch

AI Summer 962 Dec 23, 2022
The GitHub repository for the paper: “Time Series is a Special Sequence: Forecasting with Sample Convolution and Interaction“.

SCINet This is the original PyTorch implementation of the following work: Time Series is a Special Sequence: Forecasting with Sample Convolution and I

386 Jan 01, 2023
Code for HLA-Face: Joint High-Low Adaptation for Low Light Face Detection (CVPR21)

HLA-Face: Joint High-Low Adaptation for Low Light Face Detection The official PyTorch implementation for HLA-Face: Joint High-Low Adaptation for Low L

Wenjing Wang 77 Dec 08, 2022
Code for "On the Effects of Batch and Weight Normalization in Generative Adversarial Networks"

Note: this repo has been discontinued, please check code for newer version of the paper here Weight Normalized GAN Code for the paper "On the Effects

Sitao Xiang 182 Sep 06, 2021
Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm.

REDQ source code Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm. Paper link: https://arxiv.org/abs/2101.05

109 Dec 16, 2022
[ICLR 2022 Oral] F8Net: Fixed-Point 8-bit Only Multiplication for Network Quantization

F8Net Fixed-Point 8-bit Only Multiplication for Network Quantization (ICLR 2022 Oral) OpenReview | arXiv | PDF | Model Zoo | BibTex PyTorch implementa

Snap Research 76 Dec 13, 2022
A playable implementation of Fully Convolutional Networks with Keras.

keras-fcn A re-implementation of Fully Convolutional Networks with Keras Installation Dependencies keras tensorflow Install with pip $ pip install git

JihongJu 202 Sep 07, 2022
Object detection (YOLO) with pytorch, OpenCV and python

Real Time Object/Face Detection Using YOLO-v3 This project implements a real time object and face detection using YOLO algorithm. You only look once,

1 Aug 04, 2022
PyTorch Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

pytorch-fcn PyTorch implementation of Fully Convolutional Networks. Requirements pytorch = 0.2.0 torchvision = 0.1.8 fcn = 6.1.5 Pillow scipy tqdm

Kentaro Wada 1.6k Jan 07, 2023
Reinforcement Learning with Q-Learning Algorithm on gym's frozen lake environment implemented in python

Reinforcement Learning with Q Learning Algorithm Q learning algorithm is trained on the gym's frozen lake environment. Libraries Used gym Numpy tqdm P

1 Nov 10, 2021
DIT is a DTLS MitM proxy implemented in Python 3. It can intercept, manipulate and suppress datagrams between two DTLS endpoints and supports psk-based and certificate-based authentication schemes (RSA + ECC).

DIT - DTLS Interception Tool DIT is a MitM proxy tool to intercept DTLS traffic. It can intercept, manipulate and/or suppress DTLS datagrams between t

52 Nov 30, 2022
To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

Kunal Wadhwa 2 Jan 05, 2022
Understanding Convolution for Semantic Segmentation

TuSimple-DUC by Panqu Wang, Pengfei Chen, Ye Yuan, Ding Liu, Zehua Huang, Xiaodi Hou, and Garrison Cottrell. Introduction This repository is for Under

TuSimple 585 Dec 31, 2022
Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network.

Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network

111 Dec 27, 2022
AI Based Smart Exam Proctoring Package

AI Based Smart Exam Proctoring Package It takes image (base64) as input: Provide Output as: Detection of Mobile phone. Detection of More than 1 person

NARENDER KESWANI 3 Sep 09, 2022
Official Implementation of DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation

DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation [Arxiv] [Paper] As acquiring pixel-wise an

Lukas Hoyer 305 Dec 29, 2022
Mmrotate - OpenMMLab Rotated Object Detection Benchmark

OpenMMLab website HOT OpenMMLab platform TRY IT OUT 📘 Documentation | 🛠️ Insta

OpenMMLab 1.2k Jan 04, 2023