Codebase for the Summary Loop paper at ACL2020

Overview

Summary Loop

This repository contains the code for ACL2020 paper: The Summary Loop: Learning to Write Abstractive Summaries Without Examples.

Training Procedure

We provide pre-trained models for each component needed in the Summary Loop Release:

  • keyword_extractor.joblib: An sklearn pipeline that will extract can be used to compute tf-idf scores of words according to the BERT vocabulary, which is used by the Masking Procedure,
  • bert_coverage.bin: A bert-base-uncased finetuned model on the task of Coverage for the news domain,
  • fluency_news_bs32.bin: A GPT2 (base) model finetuned on a large corpus of news articles, used as the Fluency model,
  • gpt2_copier23.bin: A GPT2 (base) model that can be used as an initial point for the Summarizer model.

In the release, we also provide:

  • pretrain_coverage.py script to train a coverage model from scratch,
  • train_generator.py to train a fluency model from scratch (we recommend Fluency model on domain of summaries, such as news, legal, etc.)

Once all the pretraining models are ready, training a summarizer can be done using the train_summary_loop.py:

python train_summary_loop.py --experiment wikinews_test --dataset_file data/wikinews.db

Scorer Models

The Coverage and Fluency model and Guardrails scores can be used separately for analysis, evaluation, etc. They are respectively in model_coverage.py and model_guardrails.py, each model is implemented as a class with a score(document, summary) function. The Fluency model is a Language model, which is also the generator (in model_generator.py). Examples of how to run each model are included in the class files, at the bottom of the files.

Bringing in your own data

Want to test out the Summary Loop on a different language/type of text? A Jupyter Notebook can help you bring your own data into the SQLite format we use in the pre-training scripts. Otherwise you can modify the scripts' data loading (DataLoader) and collate function (collate_fn).

Cite the work

If you make use of the code, models, or algorithm, please cite our paper:

@inproceedings{laban2020summary,
  title={The Summary Loop: Learning to Write Abstractive Summaries Without Examples},
  author={Laban, Philippe and Hsi, Andrew and Canny, John and Hearst, Marti A},
  booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
  volume={1},
  year={2020}
}

Contributing

If you'd like to contribute, or have questions or suggestions, you can contact us at [email protected]. All contributions welcome! For example, if you have a type of text data on which you want to apply the Summary Loop.

Comments
  • Error Loading Model  RuntimeError: Error(s) in loading state_dict for GPT2LMHeadModel:

    Error Loading Model RuntimeError: Error(s) in loading state_dict for GPT2LMHeadModel:

    Traceback (most recent call last):
      File "train_summary_loop.py", line 59, in <module>
        summarizer = GeneTransformer(max_output_length=args.max_output_length, device=args.device, tokenizer_type='gpt2', starter_model=summarizer_model_start)
      File "/home/tait-dev-0/summary_loop/summary_loop/model_generator.py", line 30, in __init__
        self.reload(starter_model)
      File "/home/tait-dev-0/summary_loop/summary_loop/model_generator.py", line 39, in reload
        print(self.model.load_state_dict(torch.load(from_file)))
      File "/home/tait-dev-0/anaconda2/envs/summary_loop/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1045, in load_state_dict
        self.__class__.__name__, "\n\t".join(error_msgs)))
    RuntimeError: Error(s) in loading state_dict for GPT2LMHeadModel:
    	Missing key(s) in state_dict: "transformer.h.0.attn.masked_bias", "transformer.h.1.attn.masked_bias", "transformer.h.2.attn.masked_bias", "transformer.h.3.attn.masked_bias", "transformer.h.4.attn.masked_bias", "transformer.h.5.attn.masked_bias", "transformer.h.6.attn.masked_bias", "transformer.h.7.attn.masked_bias", "transformer.h.8.attn.masked_bias", "transformer.h.9.attn.masked_bias", "transformer.h.10.attn.masked_bias", "transformer.h.11.attn.masked_bias". 
    
    
    opened by raviolli 6
  • Missing models for training

    Missing models for training

    Dear author, I tried to load the fluency_news_model_file models but failed. It seems that the "news_gpt2_bs32.bin" is not provided in the release.

    I tried to replace it with "fluency_news_bs32.bin", but it does not seem to match the GeneTransformer. I.e. when I tried to load the fluency model using modelf=GeneTransformer(max_output_length=args.max_output_length, device=args.device, starter_model=fluency_news_model_file) it shows "IncompatibleKeys(missing_keys=['transformer.h.0.attn.masked_bias', 'transformer.h.1.attn.masked_bias', 'transformer.h.2.attn.masked_bias', 'transformer.h.3.attn.masked_bias', 'transformer.h.4.attn.masked_bias', 'transformer.h.5.attn.masked_bias', 'transformer.h.6.attn.masked_bias', 'transformer.h.7.attn.masked_bias', 'transformer.h.8.attn.masked_bias', 'transformer.h.9.attn.masked_bias', 'transformer.h.10.attn.masked_bias', 'transformer.h.11.attn.masked_bias'], unexpected_keys=[]) "

    Is this fine?

    In addition, when I tried to load the key word coverage model, the keys do not match either I.e. When running modelc = KeywordCoverage(args.device, keyword_model_file=coverage_keyword_model_file, model_file=coverage_model_file)} It shows IncompatibleKeys(missing_keys=['bert.embeddings.position_ids', 'cls.predictions.decoder.bias'], unexpected_keys=[])

    Wondering how I could deal with this situation

    opened by pengshancai 2
  • IndexError when decode with beam_size > 1

    IndexError when decode with beam_size > 1

    Followed the instruction from here and changed the beam_size to more than 1. IndexError occur:

    ~/summary_loop/model_generator.py in decode(self, bodies, max_output_length, max_batch_size, beam_size, return_scores, sample, progress)
        232             with torch.no_grad():
        233                 if beam_size > 1:
    --> 234                     batch_outputs = self.decode_beam_batch(batch_bodies, beam_size=beam_size, max_output_length=max_output_length, sample=sample)
        235                 else:
        236                     batch_outputs = self.decode_batch(batch_bodies, max_output_length=max_output_length, sample=sample, return_scores=return_scores)
    
    ~/summary_loop/model_generator.py in decode_beam_batch(self, bodies, beam_size, max_output_length, sample)
        200             if build_up is not None:
        201                 build_up = build_up[tracks, :]
    --> 202             past = [p[:, tracks, :] for p in past]
        203 
        204             # Update the latest scores, and the current_build
    
    ~/summary_loop/model_generator.py in <listcomp>(.0)
        200             if build_up is not None:
        201                 build_up = build_up[tracks, :]
    --> 202             past = [p[:, tracks, :] for p in past]
        203 
        204             # Update the latest scores, and the current_build
    
    IndexError: tensors used as indices must be long, byte or bool tensors
    
    opened by s103321048 2
  • cannot reshape tensor of 0 elements into shape [-1, 0]

    cannot reshape tensor of 0 elements into shape [-1, 0]

    I followed the instruction training model with the provided example wikinews.db: python train_summary_loop.py --experiment wikinews_test --dataset_file data/wikinews.db

    It did start training but later stop due to Runtimeerror:

    Traceback (most recent call last):
      File "train_summary_loop.py", line 138, in <module>
        sampled_summaries, sampled_logprobs, sampled_tokens, input_past, sampled_end_idxs = summarizer.decode_batch(bodies, max_output_length=args.max_output_length, return_logprobs=True, sample=True)
      File "/home/robin/TrySomethingNew/summary_loop/model_generator.py", line 100, in decode_batch
        _, input_past = self.model(input_ids=inputs, past_key_values=None)
      File "/home/robin/virtual-env/summary-loop/lib/python3.6/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
        result = self.forward(*input, **kwargs)
      File "/home/robin/virtual-env/summary-loop/lib/python3.6/site-packages/transformers/modeling_gpt2.py", line 731, in forward
        return_dict=return_dict,
      File "/home/robin/virtual-env/summary-loop/lib/python3.6/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
        result = self.forward(*input, **kwargs)
      File "/home/robin/virtual-env/summary-loop/lib/python3.6/site-packages/transformers/modeling_gpt2.py", line 533, in forward
        input_ids = input_ids.view(-1, input_shape[-1])
    RuntimeError: cannot reshape tensor of 0 elements into shape [-1, 0] because the unspecified
    dimension size -1 can be any value and is ambiguous
    
    opened by s103321048 2
  • Code for summary generation from the given model is not provided

    Code for summary generation from the given model is not provided

    You mentioned "Releasing the 11,490 summaries generated by the Summary Loop model (summary_loop_length46.bin) on the CNN/DM test set." and provided the json file "cnndm_test_summary_loop.json". Is there any code to get the json file(summaries) from the given model(.bin). If you have such code, then please share.

    opened by tarunyadav 1
  • Resuming training

    Resuming training

    Is resuming training simply starting from the checkpoint instead of the gpt3 copier bin?

    For example:

    #summarizer_model_start = os.path.join(models_folder, "gpt2_copier23.bin")
    summarizer_model_start = os.path.join(models_folder, "summarizer_wikinews_test_0_ckpt.bin")
    
    opened by RevanthRameshkumar 1
  • Encoding error in bin file

    Encoding error in bin file

    (dlenv) D:\summary loop\summary_loop-0.1>python summary_loop_length10.bin --experiment wikinews_test --dataset_file data/wikinews.db File "summary_loop_length10.bin", line 1 SyntaxError: Non-UTF-8 code starting with '\x80' in file summary_loop_length10.bin on line 1, but no encoding declared; see http://python.org/dev/peps/pep-0263/ for details

    Anyone else get this issue? Currently debugging

    opened by RevanthRameshkumar 1
  • a sample of data in hdf5 format

    a sample of data in hdf5 format

    Hi,

    I'm trying to train the models from scratch since I'd like to use them on a different language. It seems that one needs a dataset in hdf5 format instead of SQL to do that. Can you please release a sample of data in hdf5 format?

    Thanks

    opened by azagsam 1
  • Missing Model to run example

    Missing Model to run example

    I'm trying to run the example:

    python train_summary_loop.py --experiment wikinews_test --dataset_file ../data/wikinews.db --root_folder ../ --device cuda

    but it seems I'm missing the ../models/fluency_news_bs32.bin

    it doesn't seem to be in the list of downloadable models. Mistake??

    opened by raviolli 1
  • Error running training_summary example

    Error running training_summary example

    python train_summary_loop.py --experiment wikinews_test --dataset_file ../data/wikinews.db

    Traceback (most recent call last):
      File "train_summary_loop.py", line 56, in <module>
        bert_tokenizer = utils_tokenizer.BERTCacheTokenizer()
      File "/home/tait-dev-0/summary_loop/summary_loop/utils_tokenizer.py", line 88, in __init__
        self.tokenizer.max_len = 10000
    AttributeError: can't set attribute
    

    transformers 3.0.2 py_0 conda-forge

    I created a separate conda environment. Is this a transformer version issue?

    opened by raviolli 1
  • updated torch.load params

    updated torch.load params

    Updated occurrences of torch.load to include map_location parameter. When attempting to train with --device set to cpu, torch.load may attempt to load a file with GPU tensors, which will lead to loading to GPU by default (see: https://pytorch.org/docs/stable/generated/torch.load.html). If --device is set to cpu, this will error on a cpu-only machine. Otherwise, it will go against desired functionality. This pull request resolves this issue.

    opened by bsh98 0
Releases(0.3)
  • 0.3(Jun 11, 2021)

    Releasing the 11,490 summaries generated by the Summary Loop model (summary_loop_length46.bin) on the CNN/DM test set. Each summary is released attached with the CNN/DM id. The following code snippet can be used to evaluate ROUGE scores:

    from datasets import load_dataset, load_metric
    import json
    with open("/home/phillab/data/cnndm_test_summary_loop.json", "r") as f:
        summary_loop_gens = json.load(f)
    rouge = load_metric("rouge")
    dataset_test = load_dataset("cnn_dailymail", "3.0.0")["test"]
    id2summary_loop = {d["id"]: d["summary_loop_gen"] for d in summary_loop_gens}
    candidates, references = [], []
    for d in dataset_test:
        references.append(d["highlights"])
        candidates.append(id2summary_loop[d["id"]])
    print(len(references), len(candidates))
    print(rouge.compute(predictions=candidates, references=references))
    

    Notes: (1) this relies on HuggingFace's datasets repository (https://github.com/huggingface/datasets) to load the CNN/DM dataset, and the ROUGE metric. (2) The ROUGE metric implementation used in the above example is not the original, PERL-based implementation of ROUGE used for official numbers in the paper. This serves for demonstration purposes to show how to use the file.

    Source code(tar.gz)
    Source code(zip)
    cnndm_test_summary_loop.json(3.40 MB)
  • 0.2(Sep 8, 2020)

    We release an upgraded set of initial models for the training script that are compatible with transformers==3.1.0 to make it easier to get started. The original release (0.1) used version 2.8.0 of transformers, and there were some breaking changed introduced since, which leads to some model loading failing. The requirements.txt in the latest release has been updated with compatible library versions to simplify installation.

    Initial Models

    These sets of models work using Python 3.6.10, Transformers 3.1.0 and Sklearn 0.22.1:

    • keyword_extractor.joblib: An sklearn pipeline that will extract can be used to compute tf-idf scores of words according to the BERT vocabulary, which is used by the Masking Procedure,
    • bert_coverage.bin: A bert-base-uncased finetuned model on the task of Coverage for the news domain,
    • fluency_news_bs32.bin: A GPT2 (base) model finetuned on a large corpus of news articles, used as the Fluency model,
    • gpt2_copier23.bin: A GPT2 (base) model that can be used as an initial point for the Summarizer model.

    Final Models

    Unfortunately, the three final models (trained summarizers) released in v0.1 do not work anymore in the latest transformers library, and only work in versions 2.8.0 and before. Once we retrain these models, we will reupload them. If this is of interest, feel free to add an issue or contact us.

    Source code(tar.gz)
    Source code(zip)
    bert_coverage.bin(420.06 MB)
    fluency_news_bs32.bin(486.73 MB)
    gpt2_copier23.bin(633.97 MB)
    keyword_extractor.joblib(667.33 KB)
  • v0.1(Jun 25, 2020)

    We release models and data needed to run the Summary Loop and use the models we trained.

    Initial models

    Here are the models needed to run the train_summary_loop.py:

    • keyword_extractor.joblib: An sklearn pipeline that will extract can be used to compute tf-idf scores of words according to the BERT vocabulary, which is used by the Masking Procedure,
    • bert_coverage.bin: A bert-base-uncased finetuned model on the task of Coverage for the news domain,
    • fluency_news_bs32.bin: A GPT2 (base) model finetuned on a large corpus of news articles, used as the Fluency model,
    • gpt2_copier23.bin: A GPT2 (base) model that can be used as an initial point for the Summarizer model.

    Sample dataset

    We release a sample dataset of Wikinews news articles to get researchers started using the Summary Loop: wikinews.db. We cannot release the full dataset we used for copyright reasons. We note that we do not expect this to be enough to train to best performance, and recommend finding larger datasets (such as Newsroom or CNN/DM) for full-fledged training.

    Final models

    We release 3 Summarizer models obtained through the Summary Loop procedure for 3 target lengths: summary_loop_length_12.bin, summary_loop_length_27.bin, summary_loop_length_61.bin

    Source code(tar.gz)
    Source code(zip)
    bert_coverage.bin(420.06 MB)
    fluency_news_bs32.bin(522.73 MB)
    gpt2_copier23.bin(633.97 MB)
    keyword_extractor.joblib(667.33 KB)
    summary_loop_length10.bin(522.73 MB)
    summary_loop_length24.bin(522.73 MB)
    summary_loop_length46.bin(522.73 MB)
    wikinews.db(91.20 MB)
Owner
Canny Lab @ The University of California, Berkeley
Canny Lab @ The University of California, Berkeley
Merlion: A Machine Learning Framework for Time Series Intelligence

Merlion: A Machine Learning Library for Time Series Table of Contents Introduction Installation Documentation Getting Started Anomaly Detection Foreca

Salesforce 2.8k Dec 30, 2022
g2o: A General Framework for Graph Optimization

g2o - General Graph Optimization Linux: Windows: g2o is an open-source C++ framework for optimizing graph-based nonlinear error functions. g2o has bee

Rainer Kümmerle 2.5k Dec 30, 2022
CoMoGAN: continuous model-guided image-to-image translation. CVPR 2021 oral.

CoMoGAN: Continuous Model-guided Image-to-Image Translation Official repository. Paper CoMoGAN: continuous model-guided image-to-image translation [ar

166 Dec 31, 2022
GAN-generated image detection based on CNNs

GAN-image-detection This repository contains a GAN-generated image detector developed to distinguish real images from synthetic ones. The detector is

Image and Sound Processing Lab 17 Dec 15, 2022
An OpenAI-Gym Package for Training and Testing Reinforcement Learning algorithms with OpenSim Models

Authors: Utkarsh A. Mishra and Dr. Dimitar Stanev Advisors: Dr. Dimitar Stanev and Prof. Auke Ijspeert, Biorobotics Laboratory (BioRob), EPFL Video Pl

Utkarsh Mishra 16 Dec 13, 2022
Experiments and examples converting Transformers to ONNX

Experiments and examples converting Transformers to ONNX This repository containes experiments and examples on converting different Transformers to ON

Philipp Schmid 4 Dec 24, 2022
An ever-growing playground of notebooks showcasing CLIP's impressive zero-shot capabilities.

Playground for CLIP-like models Demo Colab Link GradCAM Visualization Naive Zero-shot Detection Smarter Zero-shot Detection Captcha Solver Changelog 2

Kevin Zakka 101 Dec 30, 2022
Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation

Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation The skip connections in U-Net pass features from the levels of enc

Boheng Cao 1 Dec 29, 2021
Repository for "Space-Time Correspondence as a Contrastive Random Walk" (NeurIPS 2020)

Space-Time Correspondence as a Contrastive Random Walk This is the repository for Space-Time Correspondence as a Contrastive Random Walk, published at

A. Jabri 239 Dec 27, 2022
Multiple Object Tracking with Yolov5!

Tracking with yolov5 This implementation is for who need to tracking multi-object only with detector. You can easily track mult-object with your well

9 Nov 08, 2022
Official repository for the ICCV 2021 paper: UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model.

UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model Official repository for the ICCV 2021 paper: UltraPose: Syn

MomoAILab 92 Dec 21, 2022
NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem

NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem Liang Xin, Wen Song, Zhiguang

xinliangedu 33 Dec 27, 2022
[NeurIPS-2020] Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID.

Self-paced Contrastive Learning (SpCL) The official repository for Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID

Yixiao Ge 286 Dec 21, 2022
[CVPR 2022] Official Pytorch code for OW-DETR: Open-world Detection Transformer

OW-DETR: Open-world Detection Transformer (CVPR 2022) [Paper] Akshita Gupta*, Sanath Narayan*, K J Joseph, Salman Khan, Fahad Shahbaz Khan, Mubarak Sh

Akshita Gupta 127 Dec 27, 2022
Official implement of Paper:A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sening images

A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images 深度监督影像融合网络DSIFN用于高分辨率双时相遥感影像变化检测 Of

Chenxiao Zhang 135 Dec 19, 2022
A multi-mode modulator for multi-domain few-shot classification (ICCV)

A multi-mode modulator for multi-domain few-shot classification (ICCV)

Yanbin Liu 8 Apr 28, 2022
High dimensional black-box optimizer using Latent Action Monte Carlo Tree Search algorithm

LA-MCTS The code is based of paper Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search. Component LA-MCTS has thr

Meta Research 18 Oct 24, 2022
source code of “Visual Saliency Transformer” (ICCV2021)

Visual Saliency Transformer (VST) source code for our ICCV 2021 paper “Visual Saliency Transformer” by Nian Liu, Ni Zhang, Kaiyuan Wan, Junwei Han, an

89 Dec 21, 2022
Generating synthetic mobility data for a realistic population with RNNs to improve utility and privacy

lbs-data Motivation Location data is collected from the public by private firms via mobile devices. Can this data also be used to serve the public goo

Alex 11 Sep 22, 2022
Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Sidd Karamcheti 50 Nov 16, 2022