Codebase for the Summary Loop paper at ACL2020

Overview

Summary Loop

This repository contains the code for ACL2020 paper: The Summary Loop: Learning to Write Abstractive Summaries Without Examples.

Training Procedure

We provide pre-trained models for each component needed in the Summary Loop Release:

  • keyword_extractor.joblib: An sklearn pipeline that will extract can be used to compute tf-idf scores of words according to the BERT vocabulary, which is used by the Masking Procedure,
  • bert_coverage.bin: A bert-base-uncased finetuned model on the task of Coverage for the news domain,
  • fluency_news_bs32.bin: A GPT2 (base) model finetuned on a large corpus of news articles, used as the Fluency model,
  • gpt2_copier23.bin: A GPT2 (base) model that can be used as an initial point for the Summarizer model.

In the release, we also provide:

  • pretrain_coverage.py script to train a coverage model from scratch,
  • train_generator.py to train a fluency model from scratch (we recommend Fluency model on domain of summaries, such as news, legal, etc.)

Once all the pretraining models are ready, training a summarizer can be done using the train_summary_loop.py:

python train_summary_loop.py --experiment wikinews_test --dataset_file data/wikinews.db

Scorer Models

The Coverage and Fluency model and Guardrails scores can be used separately for analysis, evaluation, etc. They are respectively in model_coverage.py and model_guardrails.py, each model is implemented as a class with a score(document, summary) function. The Fluency model is a Language model, which is also the generator (in model_generator.py). Examples of how to run each model are included in the class files, at the bottom of the files.

Bringing in your own data

Want to test out the Summary Loop on a different language/type of text? A Jupyter Notebook can help you bring your own data into the SQLite format we use in the pre-training scripts. Otherwise you can modify the scripts' data loading (DataLoader) and collate function (collate_fn).

Cite the work

If you make use of the code, models, or algorithm, please cite our paper:

@inproceedings{laban2020summary,
  title={The Summary Loop: Learning to Write Abstractive Summaries Without Examples},
  author={Laban, Philippe and Hsi, Andrew and Canny, John and Hearst, Marti A},
  booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
  volume={1},
  year={2020}
}

Contributing

If you'd like to contribute, or have questions or suggestions, you can contact us at [email protected]. All contributions welcome! For example, if you have a type of text data on which you want to apply the Summary Loop.

Comments
  • Error Loading Model  RuntimeError: Error(s) in loading state_dict for GPT2LMHeadModel:

    Error Loading Model RuntimeError: Error(s) in loading state_dict for GPT2LMHeadModel:

    Traceback (most recent call last):
      File "train_summary_loop.py", line 59, in <module>
        summarizer = GeneTransformer(max_output_length=args.max_output_length, device=args.device, tokenizer_type='gpt2', starter_model=summarizer_model_start)
      File "/home/tait-dev-0/summary_loop/summary_loop/model_generator.py", line 30, in __init__
        self.reload(starter_model)
      File "/home/tait-dev-0/summary_loop/summary_loop/model_generator.py", line 39, in reload
        print(self.model.load_state_dict(torch.load(from_file)))
      File "/home/tait-dev-0/anaconda2/envs/summary_loop/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1045, in load_state_dict
        self.__class__.__name__, "\n\t".join(error_msgs)))
    RuntimeError: Error(s) in loading state_dict for GPT2LMHeadModel:
    	Missing key(s) in state_dict: "transformer.h.0.attn.masked_bias", "transformer.h.1.attn.masked_bias", "transformer.h.2.attn.masked_bias", "transformer.h.3.attn.masked_bias", "transformer.h.4.attn.masked_bias", "transformer.h.5.attn.masked_bias", "transformer.h.6.attn.masked_bias", "transformer.h.7.attn.masked_bias", "transformer.h.8.attn.masked_bias", "transformer.h.9.attn.masked_bias", "transformer.h.10.attn.masked_bias", "transformer.h.11.attn.masked_bias". 
    
    
    opened by raviolli 6
  • Missing models for training

    Missing models for training

    Dear author, I tried to load the fluency_news_model_file models but failed. It seems that the "news_gpt2_bs32.bin" is not provided in the release.

    I tried to replace it with "fluency_news_bs32.bin", but it does not seem to match the GeneTransformer. I.e. when I tried to load the fluency model using modelf=GeneTransformer(max_output_length=args.max_output_length, device=args.device, starter_model=fluency_news_model_file) it shows "IncompatibleKeys(missing_keys=['transformer.h.0.attn.masked_bias', 'transformer.h.1.attn.masked_bias', 'transformer.h.2.attn.masked_bias', 'transformer.h.3.attn.masked_bias', 'transformer.h.4.attn.masked_bias', 'transformer.h.5.attn.masked_bias', 'transformer.h.6.attn.masked_bias', 'transformer.h.7.attn.masked_bias', 'transformer.h.8.attn.masked_bias', 'transformer.h.9.attn.masked_bias', 'transformer.h.10.attn.masked_bias', 'transformer.h.11.attn.masked_bias'], unexpected_keys=[]) "

    Is this fine?

    In addition, when I tried to load the key word coverage model, the keys do not match either I.e. When running modelc = KeywordCoverage(args.device, keyword_model_file=coverage_keyword_model_file, model_file=coverage_model_file)} It shows IncompatibleKeys(missing_keys=['bert.embeddings.position_ids', 'cls.predictions.decoder.bias'], unexpected_keys=[])

    Wondering how I could deal with this situation

    opened by pengshancai 2
  • IndexError when decode with beam_size > 1

    IndexError when decode with beam_size > 1

    Followed the instruction from here and changed the beam_size to more than 1. IndexError occur:

    ~/summary_loop/model_generator.py in decode(self, bodies, max_output_length, max_batch_size, beam_size, return_scores, sample, progress)
        232             with torch.no_grad():
        233                 if beam_size > 1:
    --> 234                     batch_outputs = self.decode_beam_batch(batch_bodies, beam_size=beam_size, max_output_length=max_output_length, sample=sample)
        235                 else:
        236                     batch_outputs = self.decode_batch(batch_bodies, max_output_length=max_output_length, sample=sample, return_scores=return_scores)
    
    ~/summary_loop/model_generator.py in decode_beam_batch(self, bodies, beam_size, max_output_length, sample)
        200             if build_up is not None:
        201                 build_up = build_up[tracks, :]
    --> 202             past = [p[:, tracks, :] for p in past]
        203 
        204             # Update the latest scores, and the current_build
    
    ~/summary_loop/model_generator.py in <listcomp>(.0)
        200             if build_up is not None:
        201                 build_up = build_up[tracks, :]
    --> 202             past = [p[:, tracks, :] for p in past]
        203 
        204             # Update the latest scores, and the current_build
    
    IndexError: tensors used as indices must be long, byte or bool tensors
    
    opened by s103321048 2
  • cannot reshape tensor of 0 elements into shape [-1, 0]

    cannot reshape tensor of 0 elements into shape [-1, 0]

    I followed the instruction training model with the provided example wikinews.db: python train_summary_loop.py --experiment wikinews_test --dataset_file data/wikinews.db

    It did start training but later stop due to Runtimeerror:

    Traceback (most recent call last):
      File "train_summary_loop.py", line 138, in <module>
        sampled_summaries, sampled_logprobs, sampled_tokens, input_past, sampled_end_idxs = summarizer.decode_batch(bodies, max_output_length=args.max_output_length, return_logprobs=True, sample=True)
      File "/home/robin/TrySomethingNew/summary_loop/model_generator.py", line 100, in decode_batch
        _, input_past = self.model(input_ids=inputs, past_key_values=None)
      File "/home/robin/virtual-env/summary-loop/lib/python3.6/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
        result = self.forward(*input, **kwargs)
      File "/home/robin/virtual-env/summary-loop/lib/python3.6/site-packages/transformers/modeling_gpt2.py", line 731, in forward
        return_dict=return_dict,
      File "/home/robin/virtual-env/summary-loop/lib/python3.6/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
        result = self.forward(*input, **kwargs)
      File "/home/robin/virtual-env/summary-loop/lib/python3.6/site-packages/transformers/modeling_gpt2.py", line 533, in forward
        input_ids = input_ids.view(-1, input_shape[-1])
    RuntimeError: cannot reshape tensor of 0 elements into shape [-1, 0] because the unspecified
    dimension size -1 can be any value and is ambiguous
    
    opened by s103321048 2
  • Code for summary generation from the given model is not provided

    Code for summary generation from the given model is not provided

    You mentioned "Releasing the 11,490 summaries generated by the Summary Loop model (summary_loop_length46.bin) on the CNN/DM test set." and provided the json file "cnndm_test_summary_loop.json". Is there any code to get the json file(summaries) from the given model(.bin). If you have such code, then please share.

    opened by tarunyadav 1
  • Resuming training

    Resuming training

    Is resuming training simply starting from the checkpoint instead of the gpt3 copier bin?

    For example:

    #summarizer_model_start = os.path.join(models_folder, "gpt2_copier23.bin")
    summarizer_model_start = os.path.join(models_folder, "summarizer_wikinews_test_0_ckpt.bin")
    
    opened by RevanthRameshkumar 1
  • Encoding error in bin file

    Encoding error in bin file

    (dlenv) D:\summary loop\summary_loop-0.1>python summary_loop_length10.bin --experiment wikinews_test --dataset_file data/wikinews.db File "summary_loop_length10.bin", line 1 SyntaxError: Non-UTF-8 code starting with '\x80' in file summary_loop_length10.bin on line 1, but no encoding declared; see http://python.org/dev/peps/pep-0263/ for details

    Anyone else get this issue? Currently debugging

    opened by RevanthRameshkumar 1
  • a sample of data in hdf5 format

    a sample of data in hdf5 format

    Hi,

    I'm trying to train the models from scratch since I'd like to use them on a different language. It seems that one needs a dataset in hdf5 format instead of SQL to do that. Can you please release a sample of data in hdf5 format?

    Thanks

    opened by azagsam 1
  • Missing Model to run example

    Missing Model to run example

    I'm trying to run the example:

    python train_summary_loop.py --experiment wikinews_test --dataset_file ../data/wikinews.db --root_folder ../ --device cuda

    but it seems I'm missing the ../models/fluency_news_bs32.bin

    it doesn't seem to be in the list of downloadable models. Mistake??

    opened by raviolli 1
  • Error running training_summary example

    Error running training_summary example

    python train_summary_loop.py --experiment wikinews_test --dataset_file ../data/wikinews.db

    Traceback (most recent call last):
      File "train_summary_loop.py", line 56, in <module>
        bert_tokenizer = utils_tokenizer.BERTCacheTokenizer()
      File "/home/tait-dev-0/summary_loop/summary_loop/utils_tokenizer.py", line 88, in __init__
        self.tokenizer.max_len = 10000
    AttributeError: can't set attribute
    

    transformers 3.0.2 py_0 conda-forge

    I created a separate conda environment. Is this a transformer version issue?

    opened by raviolli 1
  • updated torch.load params

    updated torch.load params

    Updated occurrences of torch.load to include map_location parameter. When attempting to train with --device set to cpu, torch.load may attempt to load a file with GPU tensors, which will lead to loading to GPU by default (see: https://pytorch.org/docs/stable/generated/torch.load.html). If --device is set to cpu, this will error on a cpu-only machine. Otherwise, it will go against desired functionality. This pull request resolves this issue.

    opened by bsh98 0
Releases(0.3)
  • 0.3(Jun 11, 2021)

    Releasing the 11,490 summaries generated by the Summary Loop model (summary_loop_length46.bin) on the CNN/DM test set. Each summary is released attached with the CNN/DM id. The following code snippet can be used to evaluate ROUGE scores:

    from datasets import load_dataset, load_metric
    import json
    with open("/home/phillab/data/cnndm_test_summary_loop.json", "r") as f:
        summary_loop_gens = json.load(f)
    rouge = load_metric("rouge")
    dataset_test = load_dataset("cnn_dailymail", "3.0.0")["test"]
    id2summary_loop = {d["id"]: d["summary_loop_gen"] for d in summary_loop_gens}
    candidates, references = [], []
    for d in dataset_test:
        references.append(d["highlights"])
        candidates.append(id2summary_loop[d["id"]])
    print(len(references), len(candidates))
    print(rouge.compute(predictions=candidates, references=references))
    

    Notes: (1) this relies on HuggingFace's datasets repository (https://github.com/huggingface/datasets) to load the CNN/DM dataset, and the ROUGE metric. (2) The ROUGE metric implementation used in the above example is not the original, PERL-based implementation of ROUGE used for official numbers in the paper. This serves for demonstration purposes to show how to use the file.

    Source code(tar.gz)
    Source code(zip)
    cnndm_test_summary_loop.json(3.40 MB)
  • 0.2(Sep 8, 2020)

    We release an upgraded set of initial models for the training script that are compatible with transformers==3.1.0 to make it easier to get started. The original release (0.1) used version 2.8.0 of transformers, and there were some breaking changed introduced since, which leads to some model loading failing. The requirements.txt in the latest release has been updated with compatible library versions to simplify installation.

    Initial Models

    These sets of models work using Python 3.6.10, Transformers 3.1.0 and Sklearn 0.22.1:

    • keyword_extractor.joblib: An sklearn pipeline that will extract can be used to compute tf-idf scores of words according to the BERT vocabulary, which is used by the Masking Procedure,
    • bert_coverage.bin: A bert-base-uncased finetuned model on the task of Coverage for the news domain,
    • fluency_news_bs32.bin: A GPT2 (base) model finetuned on a large corpus of news articles, used as the Fluency model,
    • gpt2_copier23.bin: A GPT2 (base) model that can be used as an initial point for the Summarizer model.

    Final Models

    Unfortunately, the three final models (trained summarizers) released in v0.1 do not work anymore in the latest transformers library, and only work in versions 2.8.0 and before. Once we retrain these models, we will reupload them. If this is of interest, feel free to add an issue or contact us.

    Source code(tar.gz)
    Source code(zip)
    bert_coverage.bin(420.06 MB)
    fluency_news_bs32.bin(486.73 MB)
    gpt2_copier23.bin(633.97 MB)
    keyword_extractor.joblib(667.33 KB)
  • v0.1(Jun 25, 2020)

    We release models and data needed to run the Summary Loop and use the models we trained.

    Initial models

    Here are the models needed to run the train_summary_loop.py:

    • keyword_extractor.joblib: An sklearn pipeline that will extract can be used to compute tf-idf scores of words according to the BERT vocabulary, which is used by the Masking Procedure,
    • bert_coverage.bin: A bert-base-uncased finetuned model on the task of Coverage for the news domain,
    • fluency_news_bs32.bin: A GPT2 (base) model finetuned on a large corpus of news articles, used as the Fluency model,
    • gpt2_copier23.bin: A GPT2 (base) model that can be used as an initial point for the Summarizer model.

    Sample dataset

    We release a sample dataset of Wikinews news articles to get researchers started using the Summary Loop: wikinews.db. We cannot release the full dataset we used for copyright reasons. We note that we do not expect this to be enough to train to best performance, and recommend finding larger datasets (such as Newsroom or CNN/DM) for full-fledged training.

    Final models

    We release 3 Summarizer models obtained through the Summary Loop procedure for 3 target lengths: summary_loop_length_12.bin, summary_loop_length_27.bin, summary_loop_length_61.bin

    Source code(tar.gz)
    Source code(zip)
    bert_coverage.bin(420.06 MB)
    fluency_news_bs32.bin(522.73 MB)
    gpt2_copier23.bin(633.97 MB)
    keyword_extractor.joblib(667.33 KB)
    summary_loop_length10.bin(522.73 MB)
    summary_loop_length24.bin(522.73 MB)
    summary_loop_length46.bin(522.73 MB)
    wikinews.db(91.20 MB)
Owner
Canny Lab @ The University of California, Berkeley
Canny Lab @ The University of California, Berkeley
Autonomous Movement from Simultaneous Localization and Mapping

Autonomous Movement from Simultaneous Localization and Mapping About us Built by a group of Clarkson University students with the help from Professor

14 Nov 07, 2022
A Comparative Framework for Multimodal Recommender Systems

Cornac Cornac is a comparative framework for multimodal recommender systems. It focuses on making it convenient to work with models leveraging auxilia

Preferred.AI 671 Jan 03, 2023
PyTorch Implementation for AAAI'21 "Do Response Selection Models Really Know What's Next? Utterance Manipulation Strategies for Multi-turn Response Selection"

UMS for Multi-turn Response Selection Implements the model described in the following paper Do Response Selection Models Really Know What's Next? Utte

Taesun Whang 47 Nov 22, 2022
MINERVA: An out-of-the-box GUI tool for offline deep reinforcement learning

MINERVA is an out-of-the-box GUI tool for offline deep reinforcement learning, designed for everyone including non-programmers to do reinforcement learning as a tool.

Takuma Seno 80 Nov 06, 2022
This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning"

CSP_Deep_EEG This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning" {https://www

Seyed Mahdi Roostaiyan 2 Nov 08, 2022
Code for our paper "MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction" published at ICCV 2021.

MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction This repository contains the code for the p

Sven 30 Jan 05, 2023
A minimalist implementation of score-based diffusion model

sdeflow-light This is a minimalist codebase for training score-based diffusion models (supporting MNIST and CIFAR-10) used in the following paper "A V

Chin-Wei Huang 89 Dec 20, 2022
[IROS'21] SurRoL: An Open-source Reinforcement Learning Centered and dVRK Compatible Platform for Surgical Robot Learning

SurRoL IROS 2021 SurRoL: An Open-source Reinforcement Learning Centered and dVRK Compatible Platform for Surgical Robot Learning Features dVRK compati

<a href=[email protected]"> 55 Jan 03, 2023
Official implementation of NPMs: Neural Parametric Models for 3D Deformable Shapes - ICCV 2021

NPMs: Neural Parametric Models Project Page | Paper | ArXiv | Video NPMs: Neural Parametric Models for 3D Deformable Shapes Pablo Palafox, Aljaz Bozic

PabloPalafox 109 Nov 22, 2022
Pytorch implementation of "MOSNet: Deep Learning based Objective Assessment for Voice Conversion"

MOSNet pytorch implementation of "MOSNet: Deep Learning based Objective Assessment for Voice Conversion" https://arxiv.org/abs/1904.08352 Dependency L

9 Nov 18, 2022
2 Jul 19, 2022
Official repo for QHack—the quantum machine learning hackathon

Note: This repository has been frozen while we consider the submissions for the QHack Open Hackathon. We hope you enjoyed the event! Welcome to QHack,

Xanadu 118 Jan 05, 2023
object recognition with machine learning on Respberry pi

Respberrypi_object-recognition object recognition with machine learning on Respberry pi line.py 建立一支與樹梅派連線的 linebot 使用此 linebot 遠端控制樹梅派拍照 config.ini l

1 Dec 11, 2021
Fewshot-face-translation-GAN - Generative adversarial networks integrating modules from FUNIT and SPADE for face-swapping.

Few-shot face translation A GAN based approach for one model to swap them all. The table below shows our priliminary face-swapping results requiring o

768 Dec 24, 2022
ICLR21 Tent: Fully Test-Time Adaptation by Entropy Minimization

⛺️ Tent: Fully Test-Time Adaptation by Entropy Minimization This is the official project repository for Tent: Fully-Test Time Adaptation by Entropy Mi

Dequan Wang 204 Dec 25, 2022
patchmatch和patchmatchstereo算法的python实现

patchmatch patchmatch以及patchmatchstereo算法的python版实现 patchmatch参考 github patchmatchstereo参考李迎松博士的c++版代码 由于patchmatchstereo没有做任何优化,并且是python的代码,主要是方便解析算

Sanders Bao 11 Dec 02, 2022
PointPillars inference with TensorRT

A project demonstrating how to use CUDA-PointPillars to deal with cloud points data from lidar.

NVIDIA AI IOT 315 Dec 31, 2022
RRL: Resnet as representation for Reinforcement Learning

Resnet as representation for Reinforcement Learning (RRL) is a simple yet effective approach for training behaviors directly from visual inputs. We demonstrate that features learned by standard image

Meta Research 21 Dec 07, 2022
Official Tensorflow implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Detection"

M-LSD: Towards Light-weight and Real-time Line Segment Detection Official Tensorflow implementation of "M-LSD: Towards Light-weight and Real-time Line

NAVER/LINE Vision 357 Jan 04, 2023
Source code for the GPT-2 story generation models in the EMNLP 2020 paper "STORIUM: A Dataset and Evaluation Platform for Human-in-the-Loop Story Generation"

Storium GPT-2 Models This is the official repository for the GPT-2 models described in the EMNLP 2020 paper [STORIUM: A Dataset and Evaluation Platfor

Nader Akoury 27 Dec 20, 2022