Codebase for the Summary Loop paper at ACL2020

Overview

Summary Loop

This repository contains the code for ACL2020 paper: The Summary Loop: Learning to Write Abstractive Summaries Without Examples.

Training Procedure

We provide pre-trained models for each component needed in the Summary Loop Release:

  • keyword_extractor.joblib: An sklearn pipeline that will extract can be used to compute tf-idf scores of words according to the BERT vocabulary, which is used by the Masking Procedure,
  • bert_coverage.bin: A bert-base-uncased finetuned model on the task of Coverage for the news domain,
  • fluency_news_bs32.bin: A GPT2 (base) model finetuned on a large corpus of news articles, used as the Fluency model,
  • gpt2_copier23.bin: A GPT2 (base) model that can be used as an initial point for the Summarizer model.

In the release, we also provide:

  • pretrain_coverage.py script to train a coverage model from scratch,
  • train_generator.py to train a fluency model from scratch (we recommend Fluency model on domain of summaries, such as news, legal, etc.)

Once all the pretraining models are ready, training a summarizer can be done using the train_summary_loop.py:

python train_summary_loop.py --experiment wikinews_test --dataset_file data/wikinews.db

Scorer Models

The Coverage and Fluency model and Guardrails scores can be used separately for analysis, evaluation, etc. They are respectively in model_coverage.py and model_guardrails.py, each model is implemented as a class with a score(document, summary) function. The Fluency model is a Language model, which is also the generator (in model_generator.py). Examples of how to run each model are included in the class files, at the bottom of the files.

Bringing in your own data

Want to test out the Summary Loop on a different language/type of text? A Jupyter Notebook can help you bring your own data into the SQLite format we use in the pre-training scripts. Otherwise you can modify the scripts' data loading (DataLoader) and collate function (collate_fn).

Cite the work

If you make use of the code, models, or algorithm, please cite our paper:

@inproceedings{laban2020summary,
  title={The Summary Loop: Learning to Write Abstractive Summaries Without Examples},
  author={Laban, Philippe and Hsi, Andrew and Canny, John and Hearst, Marti A},
  booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
  volume={1},
  year={2020}
}

Contributing

If you'd like to contribute, or have questions or suggestions, you can contact us at [email protected]. All contributions welcome! For example, if you have a type of text data on which you want to apply the Summary Loop.

Comments
  • Error Loading Model  RuntimeError: Error(s) in loading state_dict for GPT2LMHeadModel:

    Error Loading Model RuntimeError: Error(s) in loading state_dict for GPT2LMHeadModel:

    Traceback (most recent call last):
      File "train_summary_loop.py", line 59, in <module>
        summarizer = GeneTransformer(max_output_length=args.max_output_length, device=args.device, tokenizer_type='gpt2', starter_model=summarizer_model_start)
      File "/home/tait-dev-0/summary_loop/summary_loop/model_generator.py", line 30, in __init__
        self.reload(starter_model)
      File "/home/tait-dev-0/summary_loop/summary_loop/model_generator.py", line 39, in reload
        print(self.model.load_state_dict(torch.load(from_file)))
      File "/home/tait-dev-0/anaconda2/envs/summary_loop/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1045, in load_state_dict
        self.__class__.__name__, "\n\t".join(error_msgs)))
    RuntimeError: Error(s) in loading state_dict for GPT2LMHeadModel:
    	Missing key(s) in state_dict: "transformer.h.0.attn.masked_bias", "transformer.h.1.attn.masked_bias", "transformer.h.2.attn.masked_bias", "transformer.h.3.attn.masked_bias", "transformer.h.4.attn.masked_bias", "transformer.h.5.attn.masked_bias", "transformer.h.6.attn.masked_bias", "transformer.h.7.attn.masked_bias", "transformer.h.8.attn.masked_bias", "transformer.h.9.attn.masked_bias", "transformer.h.10.attn.masked_bias", "transformer.h.11.attn.masked_bias". 
    
    
    opened by raviolli 6
  • Missing models for training

    Missing models for training

    Dear author, I tried to load the fluency_news_model_file models but failed. It seems that the "news_gpt2_bs32.bin" is not provided in the release.

    I tried to replace it with "fluency_news_bs32.bin", but it does not seem to match the GeneTransformer. I.e. when I tried to load the fluency model using modelf=GeneTransformer(max_output_length=args.max_output_length, device=args.device, starter_model=fluency_news_model_file) it shows "IncompatibleKeys(missing_keys=['transformer.h.0.attn.masked_bias', 'transformer.h.1.attn.masked_bias', 'transformer.h.2.attn.masked_bias', 'transformer.h.3.attn.masked_bias', 'transformer.h.4.attn.masked_bias', 'transformer.h.5.attn.masked_bias', 'transformer.h.6.attn.masked_bias', 'transformer.h.7.attn.masked_bias', 'transformer.h.8.attn.masked_bias', 'transformer.h.9.attn.masked_bias', 'transformer.h.10.attn.masked_bias', 'transformer.h.11.attn.masked_bias'], unexpected_keys=[]) "

    Is this fine?

    In addition, when I tried to load the key word coverage model, the keys do not match either I.e. When running modelc = KeywordCoverage(args.device, keyword_model_file=coverage_keyword_model_file, model_file=coverage_model_file)} It shows IncompatibleKeys(missing_keys=['bert.embeddings.position_ids', 'cls.predictions.decoder.bias'], unexpected_keys=[])

    Wondering how I could deal with this situation

    opened by pengshancai 2
  • IndexError when decode with beam_size > 1

    IndexError when decode with beam_size > 1

    Followed the instruction from here and changed the beam_size to more than 1. IndexError occur:

    ~/summary_loop/model_generator.py in decode(self, bodies, max_output_length, max_batch_size, beam_size, return_scores, sample, progress)
        232             with torch.no_grad():
        233                 if beam_size > 1:
    --> 234                     batch_outputs = self.decode_beam_batch(batch_bodies, beam_size=beam_size, max_output_length=max_output_length, sample=sample)
        235                 else:
        236                     batch_outputs = self.decode_batch(batch_bodies, max_output_length=max_output_length, sample=sample, return_scores=return_scores)
    
    ~/summary_loop/model_generator.py in decode_beam_batch(self, bodies, beam_size, max_output_length, sample)
        200             if build_up is not None:
        201                 build_up = build_up[tracks, :]
    --> 202             past = [p[:, tracks, :] for p in past]
        203 
        204             # Update the latest scores, and the current_build
    
    ~/summary_loop/model_generator.py in <listcomp>(.0)
        200             if build_up is not None:
        201                 build_up = build_up[tracks, :]
    --> 202             past = [p[:, tracks, :] for p in past]
        203 
        204             # Update the latest scores, and the current_build
    
    IndexError: tensors used as indices must be long, byte or bool tensors
    
    opened by s103321048 2
  • cannot reshape tensor of 0 elements into shape [-1, 0]

    cannot reshape tensor of 0 elements into shape [-1, 0]

    I followed the instruction training model with the provided example wikinews.db: python train_summary_loop.py --experiment wikinews_test --dataset_file data/wikinews.db

    It did start training but later stop due to Runtimeerror:

    Traceback (most recent call last):
      File "train_summary_loop.py", line 138, in <module>
        sampled_summaries, sampled_logprobs, sampled_tokens, input_past, sampled_end_idxs = summarizer.decode_batch(bodies, max_output_length=args.max_output_length, return_logprobs=True, sample=True)
      File "/home/robin/TrySomethingNew/summary_loop/model_generator.py", line 100, in decode_batch
        _, input_past = self.model(input_ids=inputs, past_key_values=None)
      File "/home/robin/virtual-env/summary-loop/lib/python3.6/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
        result = self.forward(*input, **kwargs)
      File "/home/robin/virtual-env/summary-loop/lib/python3.6/site-packages/transformers/modeling_gpt2.py", line 731, in forward
        return_dict=return_dict,
      File "/home/robin/virtual-env/summary-loop/lib/python3.6/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
        result = self.forward(*input, **kwargs)
      File "/home/robin/virtual-env/summary-loop/lib/python3.6/site-packages/transformers/modeling_gpt2.py", line 533, in forward
        input_ids = input_ids.view(-1, input_shape[-1])
    RuntimeError: cannot reshape tensor of 0 elements into shape [-1, 0] because the unspecified
    dimension size -1 can be any value and is ambiguous
    
    opened by s103321048 2
  • Code for summary generation from the given model is not provided

    Code for summary generation from the given model is not provided

    You mentioned "Releasing the 11,490 summaries generated by the Summary Loop model (summary_loop_length46.bin) on the CNN/DM test set." and provided the json file "cnndm_test_summary_loop.json". Is there any code to get the json file(summaries) from the given model(.bin). If you have such code, then please share.

    opened by tarunyadav 1
  • Resuming training

    Resuming training

    Is resuming training simply starting from the checkpoint instead of the gpt3 copier bin?

    For example:

    #summarizer_model_start = os.path.join(models_folder, "gpt2_copier23.bin")
    summarizer_model_start = os.path.join(models_folder, "summarizer_wikinews_test_0_ckpt.bin")
    
    opened by RevanthRameshkumar 1
  • Encoding error in bin file

    Encoding error in bin file

    (dlenv) D:\summary loop\summary_loop-0.1>python summary_loop_length10.bin --experiment wikinews_test --dataset_file data/wikinews.db File "summary_loop_length10.bin", line 1 SyntaxError: Non-UTF-8 code starting with '\x80' in file summary_loop_length10.bin on line 1, but no encoding declared; see http://python.org/dev/peps/pep-0263/ for details

    Anyone else get this issue? Currently debugging

    opened by RevanthRameshkumar 1
  • a sample of data in hdf5 format

    a sample of data in hdf5 format

    Hi,

    I'm trying to train the models from scratch since I'd like to use them on a different language. It seems that one needs a dataset in hdf5 format instead of SQL to do that. Can you please release a sample of data in hdf5 format?

    Thanks

    opened by azagsam 1
  • Missing Model to run example

    Missing Model to run example

    I'm trying to run the example:

    python train_summary_loop.py --experiment wikinews_test --dataset_file ../data/wikinews.db --root_folder ../ --device cuda

    but it seems I'm missing the ../models/fluency_news_bs32.bin

    it doesn't seem to be in the list of downloadable models. Mistake??

    opened by raviolli 1
  • Error running training_summary example

    Error running training_summary example

    python train_summary_loop.py --experiment wikinews_test --dataset_file ../data/wikinews.db

    Traceback (most recent call last):
      File "train_summary_loop.py", line 56, in <module>
        bert_tokenizer = utils_tokenizer.BERTCacheTokenizer()
      File "/home/tait-dev-0/summary_loop/summary_loop/utils_tokenizer.py", line 88, in __init__
        self.tokenizer.max_len = 10000
    AttributeError: can't set attribute
    

    transformers 3.0.2 py_0 conda-forge

    I created a separate conda environment. Is this a transformer version issue?

    opened by raviolli 1
  • updated torch.load params

    updated torch.load params

    Updated occurrences of torch.load to include map_location parameter. When attempting to train with --device set to cpu, torch.load may attempt to load a file with GPU tensors, which will lead to loading to GPU by default (see: https://pytorch.org/docs/stable/generated/torch.load.html). If --device is set to cpu, this will error on a cpu-only machine. Otherwise, it will go against desired functionality. This pull request resolves this issue.

    opened by bsh98 0
Releases(0.3)
  • 0.3(Jun 11, 2021)

    Releasing the 11,490 summaries generated by the Summary Loop model (summary_loop_length46.bin) on the CNN/DM test set. Each summary is released attached with the CNN/DM id. The following code snippet can be used to evaluate ROUGE scores:

    from datasets import load_dataset, load_metric
    import json
    with open("/home/phillab/data/cnndm_test_summary_loop.json", "r") as f:
        summary_loop_gens = json.load(f)
    rouge = load_metric("rouge")
    dataset_test = load_dataset("cnn_dailymail", "3.0.0")["test"]
    id2summary_loop = {d["id"]: d["summary_loop_gen"] for d in summary_loop_gens}
    candidates, references = [], []
    for d in dataset_test:
        references.append(d["highlights"])
        candidates.append(id2summary_loop[d["id"]])
    print(len(references), len(candidates))
    print(rouge.compute(predictions=candidates, references=references))
    

    Notes: (1) this relies on HuggingFace's datasets repository (https://github.com/huggingface/datasets) to load the CNN/DM dataset, and the ROUGE metric. (2) The ROUGE metric implementation used in the above example is not the original, PERL-based implementation of ROUGE used for official numbers in the paper. This serves for demonstration purposes to show how to use the file.

    Source code(tar.gz)
    Source code(zip)
    cnndm_test_summary_loop.json(3.40 MB)
  • 0.2(Sep 8, 2020)

    We release an upgraded set of initial models for the training script that are compatible with transformers==3.1.0 to make it easier to get started. The original release (0.1) used version 2.8.0 of transformers, and there were some breaking changed introduced since, which leads to some model loading failing. The requirements.txt in the latest release has been updated with compatible library versions to simplify installation.

    Initial Models

    These sets of models work using Python 3.6.10, Transformers 3.1.0 and Sklearn 0.22.1:

    • keyword_extractor.joblib: An sklearn pipeline that will extract can be used to compute tf-idf scores of words according to the BERT vocabulary, which is used by the Masking Procedure,
    • bert_coverage.bin: A bert-base-uncased finetuned model on the task of Coverage for the news domain,
    • fluency_news_bs32.bin: A GPT2 (base) model finetuned on a large corpus of news articles, used as the Fluency model,
    • gpt2_copier23.bin: A GPT2 (base) model that can be used as an initial point for the Summarizer model.

    Final Models

    Unfortunately, the three final models (trained summarizers) released in v0.1 do not work anymore in the latest transformers library, and only work in versions 2.8.0 and before. Once we retrain these models, we will reupload them. If this is of interest, feel free to add an issue or contact us.

    Source code(tar.gz)
    Source code(zip)
    bert_coverage.bin(420.06 MB)
    fluency_news_bs32.bin(486.73 MB)
    gpt2_copier23.bin(633.97 MB)
    keyword_extractor.joblib(667.33 KB)
  • v0.1(Jun 25, 2020)

    We release models and data needed to run the Summary Loop and use the models we trained.

    Initial models

    Here are the models needed to run the train_summary_loop.py:

    • keyword_extractor.joblib: An sklearn pipeline that will extract can be used to compute tf-idf scores of words according to the BERT vocabulary, which is used by the Masking Procedure,
    • bert_coverage.bin: A bert-base-uncased finetuned model on the task of Coverage for the news domain,
    • fluency_news_bs32.bin: A GPT2 (base) model finetuned on a large corpus of news articles, used as the Fluency model,
    • gpt2_copier23.bin: A GPT2 (base) model that can be used as an initial point for the Summarizer model.

    Sample dataset

    We release a sample dataset of Wikinews news articles to get researchers started using the Summary Loop: wikinews.db. We cannot release the full dataset we used for copyright reasons. We note that we do not expect this to be enough to train to best performance, and recommend finding larger datasets (such as Newsroom or CNN/DM) for full-fledged training.

    Final models

    We release 3 Summarizer models obtained through the Summary Loop procedure for 3 target lengths: summary_loop_length_12.bin, summary_loop_length_27.bin, summary_loop_length_61.bin

    Source code(tar.gz)
    Source code(zip)
    bert_coverage.bin(420.06 MB)
    fluency_news_bs32.bin(522.73 MB)
    gpt2_copier23.bin(633.97 MB)
    keyword_extractor.joblib(667.33 KB)
    summary_loop_length10.bin(522.73 MB)
    summary_loop_length24.bin(522.73 MB)
    summary_loop_length46.bin(522.73 MB)
    wikinews.db(91.20 MB)
Owner
Canny Lab @ The University of California, Berkeley
Canny Lab @ The University of California, Berkeley
Neural network for recognizing the gender of people in photos

Neural Network For Gender Recognition How to test it? Install requirements.txt file using pip install -r requirements.txt command Run nn.py using pyth

Valery Chapman 1 Sep 18, 2022
Segmentation models with pretrained backbones. PyTorch.

Python library with Neural Networks for Image Segmentation based on PyTorch. The main features of this library are: High level API (just two lines to

Pavel Yakubovskiy 6.6k Jan 06, 2023
Lightweight Salient Object Detection in Optical Remote Sensing Images via Feature Correlation

CorrNet This project provides the code and results for 'Lightweight Salient Object Detection in Optical Remote Sensing Images via Feature Correlation'

Gongyang Li 13 Nov 03, 2022
git《Self-Attention Attribution: Interpreting Information Interactions Inside Transformer》(AAAI 2021) GitHub:

Self-Attention Attribution This repository contains the implementation for AAAI-2021 paper Self-Attention Attribution: Interpreting Information Intera

60 Dec 29, 2022
This is the code for CVPR 2021 oral paper: Jigsaw Clustering for Unsupervised Visual Representation Learning

JigsawClustering Jigsaw Clustering for Unsupervised Visual Representation Learning Pengguang Chen, Shu Liu, Jiaya Jia Introduction This project provid

DV Lab 73 Sep 18, 2022
nnFormer: Interleaved Transformer for Volumetric Segmentation

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please

jsguo 610 Dec 28, 2022
Official implementation of GraphMask as presented in our paper Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking.

GraphMask This repository contains an implementation of GraphMask, the interpretability technique for graph neural networks presented in our ICLR 2021

Michael Schlichtkrull 29 Sep 02, 2022
🥈78th place in Riiid Solution🥈

Riiid Answer Correctness Prediction Introduction This repository is the code that placed 78th in Riiid Answer Correctness Prediction competition. Requ

ds wook 14 Apr 26, 2022
Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Codes-for-Algorithms Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Tracy (Shengmin) Tao 1 Apr 12, 2022
Companion repository to the paper accepted at the 4th ACM SIGSPATIAL International Workshop on Advances in Resilient and Intelligent Cities

Transfer learning approach to bicycle sharing systems station location planning using OpenStreetMap Companion repository to the paper accepted at the

Politechnika Wrocławska - repozytorium dla informatyków 4 Oct 24, 2022
Model-based 3D Hand Reconstruction via Self-Supervised Learning, CVPR2021

S2HAND: Model-based 3D Hand Reconstruction via Self-Supervised Learning S2HAND presents a self-supervised 3D hand reconstruction network that can join

Yujin Chen 72 Dec 12, 2022
Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

SSRL-for-image-classification Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

Feng 2 Nov 19, 2021
Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning

Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning Update (September 18th, 2021) A supporting document de

Taimur Hassan 1 Mar 16, 2022
Feup-csr - Repository holding my group's submission to the CSR project competition

CSR Competições de Swarm Robotics Swarm Robotics Competitions This repository holds the files submitted for the CSR project competition. Project group

Nuno Pereira 1 Jan 04, 2022
Code for Fold2Seq paper from ICML 2021

[ICML2021] Fold2Seq: A Joint Sequence(1D)-Fold(3D) Embedding-based Generative Model for Protein Design Environment file: environment.yml Data and Feat

International Business Machines 43 Dec 04, 2022
BigDetection: A Large-scale Benchmark for Improved Object Detector Pre-training

BigDetection: A Large-scale Benchmark for Improved Object Detector Pre-training By Likun Cai, Zhi Zhang, Yi Zhu, Li Zhang, Mu Li, Xiangyang Xue. This

290 Dec 29, 2022
Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Şebnem 6 Jan 18, 2022
Python scripts for performing road segemtnation and car detection using the HybridNets multitask model in ONNX.

ONNX-HybridNets-Multitask-Road-Detection Python scripts for performing road segemtnation and car detection using the HybridNets multitask model in ONN

Ibai Gorordo 45 Jan 01, 2023
Incomplete easy-to-use math solver and PDF generator.

Math Expert Let me do your work Preview preview.mp4 Introduction Math Expert is our (@salastro, @younis-tarek, @marawn-mogeb) math high school graduat

SalahDin Ahmed 22 Jul 11, 2022
Official Repository for our ECCV2020 paper: Imbalanced Continual Learning with Partitioning Reservoir Sampling

Imbalanced Continual Learning with Partioning Reservoir Sampling This repository contains the official PyTorch implementation and the dataset for our

Chris Dongjoo Kim 40 Sep 18, 2022