Autonomous Movement from Simultaneous Localization and Mapping

Overview

Autonomous Movement from Simultaneous Localization and Mapping

About us

Built by a group of Clarkson University students with the help from Professor Masudul Imtiaz and his Lab Resources.

Micheal Caracciolo           - Sophomore, ECE Department
Owen Casciotti               - Senior, ECE Department
Chris Lloyd                  - Senior, ECE Department
Ernesto Sola-Thomas          - Freshman, ECE Department
Matthew Weaver               - Sophomore, ECE Department
Kyle Bielby                  - Senior, ECE Department
Md Abdul Baset Sarker        - Graduate Student, ECE Department
Tipu Sultan                  - Graduate Student, ME Department
Masudul Imtiaz               - Professor, Clarkson University ECE Department

This project began in January 2021 and was finished May 5th 2021.

Synopsis

Presenting the development of a Simultaneous Localization and Mapping (SLAM) based Autonomous Navigation system.

Supported Devices:

Jetson AGX
Jetson Nano

Hardware:

Wheelchair
Jetson Development board
Any Arduino
Development Computer to install Jetson Jetpack SDK (For AGX)
One Intel Realsense D415
One Motor controller ()
2 12V Batteries For Motors
2 12V Lipo Batteries for Jetson

Software:

Tensorflow Version: 2.3.1

OpenVSLAM

We will need to install a few different Python 3.8 packages. We recommend using Conda environments as then you will not have to compile a few packages. However, some packages are not available in Conda, for those just install via pip while inside of the appropriate Conda env.

csv
heapq
Jetson.GPIO (Can only be installed on Jetson)
keyboard
matplotlib
msgpack
numpy
scipy (Greater than 1.5.0)
signal
websockets

Initial Setup

OpenVSLAM, Official Documentation

Webserver, Not needed unless want to interface with phone

  • Move the www folder into your /var directory in your root file system.
  • Open up python server files and insert your static IP of your Jetson
  • Run python server.py

Note: There is some example data and maps in the csv format. This format is required to correctly transmit maps/paths to the device that is listening to the server.

Android Phone, APK here

  • Insert the IP wanting to connect to, in this instance, the static IP of the Jetson
  • Build the Java app to your Android Phone

Note: This can only be used if the Webserver is set up and the server.py is on. We recommend to have it be turned on via startup. We do not have this implemented in our current code, but can be easily added. If you plan on using a Android Phone for a Map/Path/End point interface, you will need to edit some lines in /src/main.py and add to send_location.py. This is all untested code currently.

Source Code, ensure you're in the right Conda Environment

  • To use your own map/.msg file from OpenVSLAM, you will need to put it in the /data folder. There are a few options with this, you can either use the raw .msg file which our MapFileUnpacker.py will take care of, or you can create a csv format of 0 and 1's in the format of a map. 0 being unoccupied and 1 being occupied in the Occupancy Grid Map. For even easier storage, you could run MapFileUnpacker.py and have it extract the keyframes into a csv, which then you can use for OLD_main.py or main.py. We recommend to use the map file you created which is in the form of .msg.
  • You can either use OLD_main.py or main.py. OLD_main.py can be ran without having to run the motors on the connected Jetson. This is helpful for debugging and testing before you decide to implement the map onto a Jetson. main.py will ONLY work on a Jetson as it will call JetsonMotorInterface.py which contains Jetson.GPIO libraries which can only be installed on a Jetson.
  • If the Android Phone is set up, you will need to edit main.py to send the start position via send_location.py to the webserver. You will also need to uncomment a few lines so that the current map is sent to the /var/www/html filepath. Then, the phone should be able to send back a end value which calls def main with that end value. Otherwise, def main will run with a predefined end value in code.
  • To set up the pinout, you will need to first build arduino_motor_ctrl.ino onto the Arduino that is connected to the motor controller. You can use virtually any pins on the Arduino, depending on what Arduino you use. Set these pins in the .ino file. Next, we want to set the pins on the Jetson that output the data to the Arduino pins. Set these pins in JetsonMotorInterface.py. Be careful not to use any I2C or USART pins as these cannot be configured as GPIO Output.

Note: To properly run main.py without any issues, it is recommended to follow this so that you do not need to run Sudo for any of the /src files. If you were to run Sudo, you would have a bunch of different libraries and it will not run properly. If you get an Illegal Instruction error, please try to create a Conda environment to run these scripts.

Note: We are using a Sabertooth 2x32 Dual 32A Motor Driver to drive our dual Wheelchair motors. The Arduino also gets it's power from the Motor Driver, but do not connect it there while it is connected to the computer for building.

A few things to be weary of, in the main.py, since we are not using the Localization from VSLAM, we are simulating the created map into a path. This path will run differently depending on how accurate it is and the speed of your motors. We recommend you to scale your room to your map, so you will want to section out your map in code and have a timing ratio to ensure it moves the right distance of "Occupancy Grid Map spaces". This is explained better in the code.

The Reinforcement Learning files inside of /src/RL are purely experimental and do work for training. However, due to time constraints, they have not been polished enough to work with our design. They are published here for any future use as they are completely made open-source.

An energy estimator for eyeriss-like DNN hardware accelerator

Energy-Estimator-for-Eyeriss-like-Architecture- An energy estimator for eyeriss-like DNN hardware accelerator This is an energy estimator for eyeriss-

HEXIN BAO 2 Mar 26, 2022
Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class.

CNNs fruits360 Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class. CNN on a pretrained model Build a CNN on a pretrained model, Res

Ricky Chuang 1 Mar 07, 2022
Özlem Taşkın 0 Feb 23, 2022
A curated list of neural network pruning resources.

A curated list of neural network pruning and related resources. Inspired by awesome-deep-vision, awesome-adversarial-machine-learning, awesome-deep-learning-papers and Awesome-NAS.

Yang He 1.7k Jan 09, 2023
A curated list of awesome neural radiance fields papers

Awesome Neural Radiance Fields A curated list of awesome neural radiance fields papers, inspired by awesome-computer-vision. How to submit a pull requ

Yen-Chen Lin 3.9k Dec 27, 2022
A Topic Modeling toolbox

Topik A Topic Modeling toolbox. Introduction The aim of topik is to provide a full suite and high-level interface for anyone interested in applying to

Anaconda, Inc. (formerly Continuum Analytics, Inc.) 93 Dec 01, 2022
Can we do Customers Segmentation using PHP and Unsupervized Machine Learning ? Yes we can ! 🤡

Customers Segmentation using PHP and Rubix ML PHP Library Can we do Customers Segmentation using PHP and Unsupervized Machine Learning ? Yes we can !

Mickaël Andrieu 11 Oct 08, 2022
Code for our EMNLP 2021 paper "Learning Kernel-Smoothed Machine Translation with Retrieved Examples"

KSTER Code for our EMNLP 2021 paper "Learning Kernel-Smoothed Machine Translation with Retrieved Examples" [paper]. Usage Download the processed datas

jiangqn 23 Nov 24, 2022
From a body shape, infer the anatomic skeleton.

OSSO: Obtaining Skeletal Shape from Outside (CVPR 2022) This repository contains the official implementation of the skeleton inference from: OSSO: Obt

Marilyn Keller 166 Dec 28, 2022
An official implementation of "Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation" (ICCV 2021) in PyTorch.

Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation This is an official implementation of the paper "Exploiting a Joint

CV Lab @ Yonsei University 35 Oct 26, 2022
Liver segmentation using MONAI and pytorch

Machine Learning use case in the field of Healthcare. In this project MONAI and pytorch frameworks are used for 3D Liver segmentation.

Abhishek Gajbhiye 2 May 30, 2022
GUI for TOAD-GAN, a PCG-ML algorithm for Token-based Super Mario Bros. Levels.

If you are using this code in your own project, please cite our paper: @inproceedings{awiszus2020toadgan, title={TOAD-GAN: Coherent Style Level Gene

Maren A. 13 Dec 14, 2022
Face Recognize System on camera AI OAK1

FRS on OAK1 Face Recognize System on camera OAK1 This project contains our work that deploy on camera OAK1 Features Anti-Spoofing Face detection Face

Tran Anh Tuan 6 Aug 08, 2022
Unsupervised Representation Learning via Neural Activation Coding

Neural Activation Coding This repository contains the code for the paper "Unsupervised Representation Learning via Neural Activation Coding" published

yookoon park 5 May 26, 2022
Code and dataset for ACL2018 paper "Exploiting Document Knowledge for Aspect-level Sentiment Classification"

Aspect-level Sentiment Classification Code and dataset for ACL2018 [paper] ‘‘Exploiting Document Knowledge for Aspect-level Sentiment Classification’’

Ruidan He 146 Nov 29, 2022
A two-stage U-Net for high-fidelity denoising of historical recordings

A two-stage U-Net for high-fidelity denoising of historical recordings Official repository of the paper (not submitted yet): E. Moliner and V. Välimäk

Eloi Moliner Juanpere 57 Jan 05, 2023
Implementation of CaiT models in TensorFlow and ImageNet-1k checkpoints. Includes code for inference and fine-tuning.

CaiT-TF (Going deeper with Image Transformers) This repository provides TensorFlow / Keras implementations of different CaiT [1] variants from Touvron

Sayak Paul 9 Jun 26, 2022
FaceAnon - Anonymize people in images and videos using yolov5-crowdhuman

Face Anonymizer Blur faces from image and video files in /input/ folder. Require

22 Nov 03, 2022
(ICONIP 2020) MobileHand: Real-time 3D Hand Shape and Pose Estimation from Color Image

MobileHand: Real-time 3D Hand Shape and Pose Estimation from Color Image This repo contains the source code for MobileHand, real-time estimation of 3D

90 Dec 12, 2022
[ICCV 2021] HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration

HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration Introduction The repository contains the source code and pre-tr

Intelligent Sensing, Perception and Computing Group 55 Dec 14, 2022