Pytorch implementation for A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose

Related tags

Deep LearningA-NeRF
Overview

A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose

Paper | Website | Data

A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose
Shih-Yang Su, Frank Yu, Michael Zollhรถfer, and Helge Rhodin
Thirty-Fifth Conference on Neural Information Processing Systems (NeurIPS 2021)

Setup

Setup environment

conda create -n anerf python=3.8
conda activate anerf

# install pytorch for your corresponding CUDA environments
pip install torch

# install pytorch3d: note that doing `pip install pytorch3d` directly may install an older version with bugs.
# be sure that you specify the version that matches your CUDA environment. See: https://github.com/facebookresearch/pytorch3d
pip install pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py38_cu102_pyt190/download.html

# install other dependencies
pip install -r requirements.txt

Download pre-processed data and pre-trained models

We provide pre-processed data in .h5 format, as well as pre-trained characters for SURREAL and Mixamo dataset.

Please see data/README.md for details.

Testing

You can use run_render.py to render the learned models under different camera motions, or retarget the character to different poses by

python run_render.py --nerf_args logs/surreal_model/args.txt --ckptpath logs/surreal_model/150000.tar \
                     --dataset surreal --entry hard --render_type bullet --render_res 512 512 \
                     --white_bkgd --runname surreal_bullet

Here,

  • --dataset specifies the data source for poses,
  • --entry specifices the particular subset from the dataset to render,
  • --render_type defines the camera motion to use, and
  • --render_res specifies the height and width of the rendered images.

Therefore, the above command will render 512x512 the learned SURREAL character with bullet-time effect like the following (resizsed to 256x256):

The output can be found in render_output/surreal_bullet/.

You can also extract mesh for the learned character:

python run_render.py --nerf_args logs/surreal_model/args.txt --ckptpath logs/surreal_model/150000.tar \
                     --dataset surreal --entry hard --render_type mesh --runname surreal_mesh

You can find the extracted .ply files in render_output/surreal_mesh/meshes/.

To render the mesh as in the paper, run

python render_mesh.py --expname surreal_mesh 

which will output the rendered images in render_output/surreal_mesh/mesh_render/ like the following:

You can change the setting in run_render.py to create your own rendering configuration.

Training

We provide template training configurations in configs/ for different settings.

To train A-NeRF on our pre-processed SURREAL dataset,

python run_nerf.py --config configs/surreal/surreal.txt --basedir logs  --expname surreal_model

The trained weights and log can be found in logs/surreal_model.

To train A-NeRF on our pre-processed Mixamo dataset with estimated poses, run

python run_nerf.py --config configs/mixamo/mixamo.txt --basedir log_mixamo/ --num_workers 8 --subject archer --expname mixamo_archer

This will train A-NeRF on Mixamo Archer with pose refinement for 500k iterations, with 8 worker threads for the dataloader.

You can also add --use_temp_loss --temp_coef 0.05 to optimize the pose with temporal constraint.

Additionally, you can specify --opt_pose_stop 200000 to stop the pose refinement at 200k iteraions to only optimize the body models for the remaining iterations.

To finetune the learned model, run

python run_nerf.py --config configs/mixamo/mixamo_finetune.txt --finetune --ft_path log_mixamo/mixamo_archer/500000.tar --expname mixamo_archer_finetune

This will finetune the learned Mixamo Archer for 200k with the already refined poses. Note that the pose will not be updated during this time.

Citation

@inproceedings{su2021anerf,
    title={A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose},
    author={Su, Shih-Yang and Yu, Frank and Zollh{\"o}fer, Michael and Rhodin, Helge},
    booktitle = {Advances in Neural Information Processing Systems},
    year={2021}
}

Acknowledgements

Owner
Shih-Yang Su
Enjoy working on ML/RL/CV/MIR related domain.
Shih-Yang Su
This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network.

GPRGNN This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network. Hidden state feature extraction i

Jianhao 92 Jan 03, 2023
ROS Basics and TurtleSim

Waypoint Follower Anna Garverick This package draws given waypoints, then waits for a service call with a start position to send the turtle to each wa

Anna Garverick 1 Dec 13, 2021
Keras-1D-NN-Classifier

Keras-1D-NN-Classifier This code is based on the reference codes linked below. reference 1, reference 2 This code is for 1-D array data classification

Jae-Hoon Shim 6 May 18, 2021
Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic

Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [Paper] [Colab is coming soon] Approach Example Usage To r

170 Jan 03, 2023
Use graph-based analysis to re-classify stocks and to improve Markowitz portfolio optimization

Dynamic Stock Industrial Classification Use graph-based analysis to re-classify stocks and experiment different re-classification methodologies to imp

Sheng Yang 10 Dec 05, 2022
Large-scale Hyperspectral Image Clustering Using Contrastive Learning, CIKM 21 Workshop

Spectral-spatial contrastive clustering (SSCC) Yaoming Cai, Yan Liu, Zijia Zhang, Zhihua Cai, and Xiaobo Liu, Large-scale Hyperspectral Image Clusteri

Yaoming Cai 4 Nov 02, 2022
Anti-UAV base on PaddleDetection

Paddle-Anti-UAV Anti-UAV base on PaddleDetection Background UAVs are very popular and we can see them in many public spaces, such as parks and playgro

Qingzhong Wang 2 Apr 20, 2022
More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval

More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval, CVPR 2021. Ayan Kumar Bhunia, Pinaki nath Chowdh

Ayan Kumar Bhunia 22 Aug 27, 2022
Official code release for "GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis"

GRAF This repository contains official code for the paper GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. You can find detailed usage i

349 Dec 29, 2022
Real-time Object Detection for Streaming Perception, CVPR 2022

StreamYOLO Real-time Object Detection for Streaming Perception Jinrong Yang, Songtao Liu, Zeming Li, Xiaoping Li, Sun Jian Real-time Object Detection

Jinrong Yang 237 Dec 27, 2022
Drone Task1 - Drone Task1 With Python

Drone_Task1 Matching Results 3.mp4 1.mp4

MLV Lab (Machine Learning and Vision Lab at Korea University) 11 Nov 14, 2022
CLNTM - Contrastive Learning for Neural Topic Model

Contrastive Learning for Neural Topic Model This repository contains the impleme

Thong Thanh Nguyen 25 Nov 24, 2022
Research code for Arxiv paper "Camera Motion Agnostic 3D Human Pose Estimation"

GMR(Camera Motion Agnostic 3D Human Pose Estimation) This repo provides the source code of our arXiv paper: Seong Hyun Kim, Sunwon Jeong, Sungbum Park

Seong Hyun Kim 1 Feb 07, 2022
Implementation of 🦩 Flamingo, state-of-the-art few-shot visual question answering attention net out of Deepmind, in Pytorch

🦩 Flamingo - Pytorch Implementation of Flamingo, state-of-the-art few-shot visual question answering attention net, in Pytorch. It will include the p

Phil Wang 630 Dec 28, 2022
Official PyTorch code for the paper: "Point-Based Modeling of Human Clothing" (ICCV 2021)

Point-Based Modeling of Human Clothing Paper | Project page | Video This is an official PyTorch code repository of the paper "Point-Based Modeling of

Visual Understanding Lab @ Samsung AI Center Moscow 64 Nov 22, 2022
Draw like Bob Ross using the power of Neural Networks (With PyTorch)!

Draw like Bob Ross using the power of Neural Networks! (+ Pytorch) Learning Process Visualization Getting started Install dependecies Requires python3

Kendrick Tan 116 Mar 07, 2022
Reinforcement learning framework and algorithms implemented in PyTorch.

Reinforcement learning framework and algorithms implemented in PyTorch.

Robotic AI & Learning Lab Berkeley 2.1k Jan 04, 2023
How to train a CNN to 99% accuracy on MNIST in less than a second on a laptop

Training a NN to 99% accuracy on MNIST in 0.76 seconds A quick study on how fast you can reach 99% accuracy on MNIST with a single laptop. Our answer

Tuomas Oikarinen 42 Dec 10, 2022
MAterial del programa Misión TIC 2022

Mision TIC 2022 Esta iniciativa, aparece como respuesta frente a los retos de la Cuarta Revolución Industrial, y tiene como objetivo la formación de 1

6 May 25, 2022
DECA: Detailed Expression Capture and Animation (SIGGRAPH 2021)

DECA: Detailed Expression Capture and Animation (SIGGRAPH2021) input image, aligned reconstruction, animation with various poses & expressions This is

Yao Feng 1.5k Jan 02, 2023