Pytorch implementation for A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose

Related tags

Deep LearningA-NeRF
Overview

A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose

Paper | Website | Data

A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose
Shih-Yang Su, Frank Yu, Michael Zollhรถfer, and Helge Rhodin
Thirty-Fifth Conference on Neural Information Processing Systems (NeurIPS 2021)

Setup

Setup environment

conda create -n anerf python=3.8
conda activate anerf

# install pytorch for your corresponding CUDA environments
pip install torch

# install pytorch3d: note that doing `pip install pytorch3d` directly may install an older version with bugs.
# be sure that you specify the version that matches your CUDA environment. See: https://github.com/facebookresearch/pytorch3d
pip install pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py38_cu102_pyt190/download.html

# install other dependencies
pip install -r requirements.txt

Download pre-processed data and pre-trained models

We provide pre-processed data in .h5 format, as well as pre-trained characters for SURREAL and Mixamo dataset.

Please see data/README.md for details.

Testing

You can use run_render.py to render the learned models under different camera motions, or retarget the character to different poses by

python run_render.py --nerf_args logs/surreal_model/args.txt --ckptpath logs/surreal_model/150000.tar \
                     --dataset surreal --entry hard --render_type bullet --render_res 512 512 \
                     --white_bkgd --runname surreal_bullet

Here,

  • --dataset specifies the data source for poses,
  • --entry specifices the particular subset from the dataset to render,
  • --render_type defines the camera motion to use, and
  • --render_res specifies the height and width of the rendered images.

Therefore, the above command will render 512x512 the learned SURREAL character with bullet-time effect like the following (resizsed to 256x256):

The output can be found in render_output/surreal_bullet/.

You can also extract mesh for the learned character:

python run_render.py --nerf_args logs/surreal_model/args.txt --ckptpath logs/surreal_model/150000.tar \
                     --dataset surreal --entry hard --render_type mesh --runname surreal_mesh

You can find the extracted .ply files in render_output/surreal_mesh/meshes/.

To render the mesh as in the paper, run

python render_mesh.py --expname surreal_mesh 

which will output the rendered images in render_output/surreal_mesh/mesh_render/ like the following:

You can change the setting in run_render.py to create your own rendering configuration.

Training

We provide template training configurations in configs/ for different settings.

To train A-NeRF on our pre-processed SURREAL dataset,

python run_nerf.py --config configs/surreal/surreal.txt --basedir logs  --expname surreal_model

The trained weights and log can be found in logs/surreal_model.

To train A-NeRF on our pre-processed Mixamo dataset with estimated poses, run

python run_nerf.py --config configs/mixamo/mixamo.txt --basedir log_mixamo/ --num_workers 8 --subject archer --expname mixamo_archer

This will train A-NeRF on Mixamo Archer with pose refinement for 500k iterations, with 8 worker threads for the dataloader.

You can also add --use_temp_loss --temp_coef 0.05 to optimize the pose with temporal constraint.

Additionally, you can specify --opt_pose_stop 200000 to stop the pose refinement at 200k iteraions to only optimize the body models for the remaining iterations.

To finetune the learned model, run

python run_nerf.py --config configs/mixamo/mixamo_finetune.txt --finetune --ft_path log_mixamo/mixamo_archer/500000.tar --expname mixamo_archer_finetune

This will finetune the learned Mixamo Archer for 200k with the already refined poses. Note that the pose will not be updated during this time.

Citation

@inproceedings{su2021anerf,
    title={A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose},
    author={Su, Shih-Yang and Yu, Frank and Zollh{\"o}fer, Michael and Rhodin, Helge},
    booktitle = {Advances in Neural Information Processing Systems},
    year={2021}
}

Acknowledgements

Owner
Shih-Yang Su
Enjoy working on ML/RL/CV/MIR related domain.
Shih-Yang Su
Torch-ngp - A pytorch implementation of the hash encoder proposed in instant-ngp

HashGrid Encoder (WIP) A pytorch implementation of the HashGrid Encoder from ins

hawkey 1k Jan 01, 2023
Learning To Have An Ear For Face Super-Resolution

Learning To Have An Ear For Face Super-Resolution [Project Page] This repository contains demo code of our CVPR2020 paper. Training and evaluation on

50 Nov 16, 2022
Explainable Medical ImageSegmentation via GenerativeAdversarial Networks andLayer-wise Relevance Propagation

MedAI: Transparency in Medical Image Segmentation What is this repo This repo contains the code and experiments that are implemented to contribute in

Awadelrahman M. A. Ahmed 1 Nov 22, 2021
Github project for Attention-guided Temporal Coherent Video Object Matting.

Attention-guided Temporal Coherent Video Object Matting This is the Github project for our paper Attention-guided Temporal Coherent Video Object Matti

71 Dec 19, 2022
The InterScript dataset contains interactive user feedback on scripts generated by a T5-XXL model.

Interscript The Interscript dataset contains interactive user feedback on a T5-11B model generated scripts. Dataset data.json contains the data in an

AI2 8 Dec 01, 2022
Narya API allows you track soccer player from camera inputs, and evaluate them with an Expected Discounted Goal (EDG) Agent

Narya The Narya API allows you track soccer player from camera inputs, and evaluate them with an Expected Discounted Goal (EDG) Agent. This repository

Paul Garnier 121 Dec 30, 2022
The implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets.

Joint t-sne This is the implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets. abstract: We present Jo

IDEAS Lab 7 Dec 18, 2022
Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022) Introdu

anonymous 14 Oct 27, 2022
EMNLP 2021 - Frustratingly Simple Pretraining Alternatives to Masked Language Modeling

Frustratingly Simple Pretraining Alternatives to Masked Language Modeling This is the official implementation for "Frustratingly Simple Pretraining Al

Atsuki Yamaguchi 31 Nov 18, 2022
PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices.

PyTorch-LIT PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices. With

Amin Rezaei 157 Dec 11, 2022
Monocular Depth Estimation - Weighted-average prediction from multiple pre-trained depth estimation models

merged_depth runs (1) AdaBins, (2) DiverseDepth, (3) MiDaS, (4) SGDepth, and (5) Monodepth2, and calculates a weighted-average per-pixel absolute dept

Pranav 39 Nov 21, 2022
BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment

BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment

Holy Wu 35 Jan 01, 2023
Source Code for DialogBERT: Discourse-Aware Response Generation via Learning to Recover and Rank Utterances (https://arxiv.org/pdf/2012.01775.pdf)

DialogBERT This is a PyTorch implementation of the DialogBERT model described in DialogBERT: Neural Response Generation via Hierarchical BERT with Dis

Xiaodong Gu 67 Jan 06, 2023
I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform some analysis,,

Virtual-Artificial-Intelligence-genesis- I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform

AKASH M 1 Nov 05, 2021
Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch

CoCa - Pytorch Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch. They were able to elegantly fit in contras

Phil Wang 565 Dec 30, 2022
A variational Bayesian method for similarity learning in non-rigid image registration (CVPR 2022)

A variational Bayesian method for similarity learning in non-rigid image registration We provide the source code and the trained models used in the re

daniel grzech 14 Nov 21, 2022
Code for KHGT model, AAAI2021

KHGT Code for KHGT accepted by AAAI2021 Please unzip the data files in Datasets/ first. To run KHGT on Yelp data, use python labcode_yelp.py For Movi

32 Nov 29, 2022
2D&3D human pose estimation

Human Pose Estimation Papers [CVPR 2016] - 201511 [IJCAI 2016] - 201602 Other Action Recognition with Joints-Pooled 3D Deep Convolutional Descriptors

133 Jan 02, 2023
SBINN: Systems-biology informed neural network

SBINN: Systems-biology informed neural network The source code for the paper M. Daneker, Z. Zhang, G. E. Karniadakis, & L. Lu. Systems biology: Identi

Lu Group 15 Nov 19, 2022
Reproduce partial features of DeePMD-kit using PyTorch.

DeePMD-kit on PyTorch For better understand DeePMD-kit, we implement its partial features using PyTorch and expose interface consuing descriptors. Tec

Shaochen Shi 8 Dec 17, 2022