This repository contains small projects related to Neural Networks and Deep Learning in general.

Overview

ILearnDeepLearning.py

NumPy NN animation

Description

People say that nothing develops and teaches you like getting your hands dirty. This repository contains small projects mostly related to Deep Learning but also Data Science in general. Subjects are closely linekd with articles I publish on Medium and are intended to complement those blog posts. For me it is a way to document my learning process, but also to help others understand neural network related issues. I hope that the content of the repository will turn out to be interesting and, above all, useful. I encourage you both to read my posts as well as to check how the code works in the action.

Hit the ground running

# clone repository
git clone https://github.com/SkalskiP/ILearnDeepLearning.py.git

# navigate to main directory
cd ILearnDeepLearning.py

# set up and activate python environment
apt-get install python3-venv
python3 -m venv .env
source .env/bin/activate

# install all required packages
pip install -r requirements.txt

Deep Dive into Math Behind Deep Networks

Medium articule - Source code

This project is mainly focused on visualizing quite complex issues related to gradient descent, activation functions and visualization of classification boundaries while teaching the model. It is a code that complements the issues described in more detail in the article. Here are some of the visualizations that have been created.

Keras model frames Keras class boundries

Figure 1. A classification boundaries graph created in every iteration of the Keras model.
Finally, the frames were combined to create an animation.

Gradient descent

Figure 2. Visualization of the gradient descent.

Let’s code a Neural Network in plain NumPy

Medium articule - Source code

After a theoretical introduction, the time has come for practical implementation of the neural network using NumPy. In this notebook you will find full source code and a comparison of the performance of the basic implementation with the model created with Keras. You can find a wider commentary to understand the order and meaning of performed functions in a related article.

NumPy NN animation

Figure 3. Visualisation of the classification boundaries achieved with simple NumPy model

Preventing Deep Neural Network from Overfitting

Medium articule - Source code

This time I focused on the analysis of the reasons for overfitting and ways to prevent it. I made simulations of neural network regulation for different lambda coefficients, analyzing the change of values in the weight matrix. Take a look at the visualizations that were created in the process.

Change of accuracy

Figure 4. Classification boundaries created by: top right corner - linear regression;
bottom left corner - neural network; bottom right corner - neural network with regularisation

Change of accuracy

Figure 5. Change of accuracy values in subsequent epochs during neural network learning.

How to train Neural Network faster with optimizers?

Medium articule - Source code

As I worked on the last article, I had the opportunity to create my own neural network using only Numpy. It was a very challenging task, but at the same time it significantly broadened my understanding of the processes that take place inside the NN. Among others, this experience made me truly realize how many factors influence neural net's performance. Selected architecture,proper hyperparameter values or even correct initiation of parameters, are just some of those things... This time however, we will focus on the decision that has a huge impact on learning process speed, as well as the accuracy of obtained predictions - the choice of the optimization strategy.

Change of accuracy

Figure 6. Examples of points which are a problem for optimization algorithms.

Change of accuracy

Figure 7. Optimizers comparison.

Simple Method of Creating Animated Graphs

Medium articule - Source code

Both in my articles and projects I try to create interesting visualizations, which very often allow me to communicate my ideas much more effectively. I decided to create a short tutorial to show you how to easily create animated visualizations using Matplotlib. I also encourage you to read my post where I described, among other things, how to create a visualization of neural network learning process.

Change of accuracy

Figure 8. Lorenz Attractor created using the Matplotlib animation API.

Gentle Dive into Math Behind Convolutional Neural Networks

Medium articule - Source code

In this post on Medium I focused on the theoretical issues related to CNNs. It is a preparation for the upcoming mini project, which aims to create my own, simple implementation of this type of the Neural Network. As a result, this section of the repository is quite narrow and includes mainly simple visualizations of the effects of a convolution with a selected filter.

Convolution

Figure 9. Convolutionary effect with selected filters.

Chess, rolls or basketball? Let's create a custom object detection model

Medium articule - Source code

My posts on the Medium are usually very theoretical - I tend to analyse and describe the algorithms that define how Neural Networks work. This time, however, I decided to break this trend and show my readers how easy it is to train your own YOLO model, capable of detecting any objects we choose. In order to achieve this goal, we will need help from a very useful and easy-to-use implementation of YOLO. In short, not much coding, but a huge effect.

Convolution

Figure 10. Detection of players moving around the basketball court,
based on YouTube-8M dataset.

Knowing What and Why? - Explaining Image Classifier Predictions

Medium articule - Source code

As we implement highly responsible Computer Vision systems, it is becoming progressively clear that we must provide not only predictions but also explanations, as to what influenced its decision. In this post, I compared and benchmarked the most commonly used libraries for explaining the model predictions in the field of Image Classification - Eli5, LIME, and SHAP. I investigated the algorithms that they leverage, as well as compared the efficiency and quality of the provided explanations.

Explaining predictions

Figure 11. Comparison of explanations provided by ELI5, LIME and SHAP

License

This project is licensed under the MIT License - see the LICENSE.md file for details

Interesting materials and ideas

This is a place where I collect links to interesting articles and papers, which I hope will become the basis for my next projects in the future.

  1. Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings
  2. Sequence to Sequence Learning with Neural Networks
  3. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation
  4. BLEU: a Method for Automatic Evaluation of Machine Translation
  5. Neural Machine Translation by Jointly Learning to Align and Translate
  6. A (Long) Peek into Reinforcement Learning
  7. Why Momentum Really Works
  8. Improving the way neural networks learn
  9. Classification and Loss Evaluation - Softmax and Cross Entropy Loss
Owner
Piotr Skalski
AI Engineer @unleashlive and @ultralytics | Founder @ makesense.ai | Computer Science Graduate @ AGH UST Cracow | Civil Engineering Graduate @ Cracow UoT
Piotr Skalski
A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation.

TiSASRec.paddle A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation. Introduction 论文:Time Interval Aware Sel

Paddorch 2 Nov 28, 2021
BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond

BasicVSR BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond Ported from https://github.com/xinntao/BasicSR Dependencie

Holy Wu 8 Jun 07, 2022
PyTorch implementation of ECCV 2020 paper "Foley Music: Learning to Generate Music from Videos "

Foley Music: Learning to Generate Music from Videos This repo holds the code for the framework presented on ECCV 2020. Foley Music: Learning to Genera

Chuang Gan 30 Nov 03, 2022
Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks.

Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks. Generally, we intergrete different kind of functional

28 Jan 08, 2023
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
Contains code for the paper "Vision Transformers are Robust Learners".

Vision Transformers are Robust Learners This repository contains the code for the paper Vision Transformers are Robust Learners by Sayak Paul* and Pin

Sayak Paul 103 Jan 05, 2023
MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research

MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research

Facebook Research 338 Dec 29, 2022
Codes for our paper "SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge" (EMNLP 2020)

SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge Introduction SentiLARE is a sentiment-aware pre-trained language

74 Dec 30, 2022
Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021.

Playground4AWS Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021. Architecture Minecraft and Lamps This project i

Vinicius Senger 5 Nov 30, 2022
Is RobustBench/AutoAttack a suitable Benchmark for Adversarial Robustness?

Adversrial Machine Learning Benchmarks This code belongs to the papers: Is RobustBench/AutoAttack a suitable Benchmark for Adversarial Robustness? Det

Adversarial Machine Learning 9 Nov 27, 2022
Multi-Modal Fingerprint Presentation Attack Detection: Evaluation On A New Dataset

PADISI USC Dataset This repository analyzes the PADISI-Finger dataset introduced in Multi-Modal Fingerprint Presentation Attack Detection: Evaluation

USC ISI VISTA Computer Vision 6 Feb 06, 2022
Official repository for: Continuous Control With Ensemble DeepDeterministic Policy Gradients

Continuous Control With Ensemble Deep Deterministic Policy Gradients This repository is the official implementation of Continuous Control With Ensembl

4 Dec 06, 2021
Source code for the NeurIPS 2021 paper "On the Second-order Convergence Properties of Random Search Methods"

Second-order Convergence Properties of Random Search Methods This repository the paper "On the Second-order Convergence Properties of Random Search Me

Adamos Solomou 0 Nov 13, 2021
An open-source outlier detection package by Getcontact Data Team

pyfbad The pyfbad library supports anomaly detection projects. An end-to-end anomaly detection application can be written using the source codes of th

Teknasyon Tech 41 Dec 27, 2022
BraTs-VNet - BraTS(Brain Tumour Segmentation) using V-Net

BraTS(Brain Tumour Segmentation) using V-Net This project is an approach to dete

Rituraj Dutta 7 Nov 27, 2022
A learning-based data collection tool for human segmentation

FullBodyFilter A Learning-Based Data Collection Tool For Human Segmentation Contents Documentation Source Code and Scripts Overview of Project Usage O

Robert Jiang 4 Jun 24, 2022
Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks.

Self Supervised Learning with Fastai Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks. Install pip install self-

Kerem Turgutlu 276 Dec 23, 2022
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
Linear image-to-image translation

Linear (Un)supervised Image-to-Image Translation Examples for linear orthogonal transformations in PCA domain, learned without pairing supervision. Tr

Eitan Richardson 40 Aug 31, 2022
Use unsupervised and supervised learning to predict stocks

AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n

Vivek Palaniappan 1.5k Dec 26, 2022