The first dataset on shadow generation for the foreground object in real-world scenes.

Overview

Object-Shadow-Generation-Dataset-DESOBA

Object Shadow Generation is to deal with the shadow inconsistency between the foreground object and the background in a composite image, that is, generating shadow for the foreground object according to background information, to make the composite image more realistic.

Our dataset DESOBA is a synthesized dataset for Object Shadow Generation. We build our dataset on the basis of Shadow-OBject Association dataset SOBA, which collects real-world images in complex scenes and provides annotated masks for object-shadow pairs. Based on SOBA dataset, we remove all the shadows to construct our DEshadowed Shadow-OBject Association(DESOBA) dataset, which can be used for shadow generation task and other shadow-related tasks as well. We illustrate the process of our DESOBA dataset construction based on SOBA dataset in the figure below.

Illustration of DESOBA dataset construction: The green arrows illustrate the process of acquiring paired data for training and evaluation. Given a ground-truth target image Ig, we manually remove all shadows to produce a deshadowed image Id. Then, we randomly select a foreground object in Ig, and replace its shadow area with the counterpart in Id to synthesize a composite image Ic without foreground shadow. Ic and Ig form a pair of input composite image and ground-truth target image. The red arrow illustrates our shadow generation task. Given Ic and its foreground mask Mfo, we aim to generate the target image Ig with foreground shadow.

Our DESOBA dataset contains 840 training images with totally 2,999 object-shadow pairs and 160 test images with totally 624 object-shadow pairs. The DESOBA dataset is provided in Baidu Cloud (access code: sipx), or Google Drive.

Prerequisites

  • Python
  • Pytorch
  • PIL

Getting Started

Installation

  • Clone this repo:
git clone https://github.com/bcmi/Object-Shadow-Generation-Dataset-DESOBA.git
cd Object-Shadow-Generation-Dataset-DESOBA
  • Download the DESOBA dataset.

  • We provide the code of obtaining training/testing tuples, each tuple contains foreground object mask, foreground shadow mask, background object mask, background shadow mask, shadow image, and synthetic composite image without foreground shadow mask. The dataloader is available in /data_processing/data/DesobaSyntheticImageGeneration_dataset.py, which can be used as dataloader in training phase or testing phase.

  • We also provide the code of visualization of training/testing tuple, run:

python Vis_Desoba_Dataset.py

Vis_Desoba_Dataset.py is available in /data_processing/.

  • We show some examples of training/testing tuples in below:

from left to right: synthetic composite image without foreground shadow, target image with foreground shadow, foreground object mask, foreground shadow mask, background object mask, and background shadow mask.

Bibtex

If you find this work is useful for your research, please cite our paper using the following BibTeX [arxiv]:

@article{hong2021shadow,
  title={Shadow Generation for Composite Image in Real-world Scenes},
  author={Hong, Yan and Niu, Li and Zhang, Jianfu and Zhang, Liqing},
  journal={arXiv preprint arXiv:2104.10338},
  year={2021}
}
Owner
BCMI
Center for Brain-Like Computing and Machine Intelligence, Shanghai Jiao Tong University.
BCMI
Jittor 64*64 implementation of StyleGAN

StyleGanJittor (Tsinghua university computer graphics course) Overview Jittor 64

Song Shengyu 3 Jan 20, 2022
Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network.

Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network

111 Dec 27, 2022
Duke Machine Learning Winter School: Computer Vision 2022

mlwscv2002 Welcome to the Duke Machine Learning Winter School: Computer Vision 2022! The MLWS-CV includes 3 hands-on training sessions on implementing

Duke + Data Science (+DS) 9 May 25, 2022
RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP

[Paper] [Хабр] [Model Card] [Colab] [Kaggle] RuDOLPH 🦌 🎄 ☃️ One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP Russian Diffusio

AI Forever 232 Jan 04, 2023
The official implementation for ACL 2021 "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval".

Code for "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval" (ACL 2021, Long) This is the repository for baseline m

Akari Asai 25 Oct 30, 2022
Code for the paper One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation, CVPR 2021.

One Thing One Click One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation (CVPR2021) Code for the paper One Thi

44 Dec 12, 2022
PyTorch Implementation of "Light Field Image Super-Resolution with Transformers"

LFT PyTorch implementation of "Light Field Image Super-Resolution with Transformers", arXiv 2021. [pdf]. Contributions: We make the first attempt to a

Squidward 62 Nov 28, 2022
Pytorch implementation of various High Dynamic Range (HDR) Imaging algorithms

Deep High Dynamic Range Imaging Benchmark This repository is the pytorch impleme

Tianhong Dai 5 Nov 16, 2022
Repo for "Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks"

Summary This is the code for the paper Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks by Yanxiang Wang, Xian Zh

zhangxian 54 Jan 03, 2023
Create and implement a deep learning library from scratch.

In this project, we create and implement a deep learning library from scratch. Table of Contents Deep Leaning Library Table of Contents About The Proj

Rishabh Bali 22 Aug 23, 2022
This repo is developed for Strong Baseline For Vehicle Re-Identification in Track 2 Ai-City-2021 Challenges

A STRONG BASELINE FOR VEHICLE RE-IDENTIFICATION This paper is accepted to the IEEE Conference on Computer Vision and Pattern Recognition Workshop(CVPR

Cybercore Co. Ltd 78 Dec 29, 2022
The MATH Dataset

Measuring Mathematical Problem Solving With the MATH Dataset This is the repository for Measuring Mathematical Problem Solving With the MATH Dataset b

Dan Hendrycks 267 Dec 26, 2022
TensorFlow Tutorial and Examples for Beginners (support TF v1 & v2)

TensorFlow Examples This tutorial was designed for easily diving into TensorFlow, through examples. For readability, it includes both notebooks and so

Aymeric Damien 42.5k Jan 08, 2023
You Only 👀 One Sequence

You Only 👀 One Sequence TL;DR: We study the transferability of the vanilla ViT pre-trained on mid-sized ImageNet-1k to the more challenging COCO obje

Hust Visual Learning Team 666 Jan 03, 2023
CoRe: Contrastive Recurrent State-Space Models

CoRe: Contrastive Recurrent State-Space Models This code implements the CoRe model and reproduces experimental results found in Robust Robotic Control

Apple 21 Aug 11, 2022
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Ubisoft 76 Dec 30, 2022
GMFlow: Learning Optical Flow via Global Matching

GMFlow GMFlow: Learning Optical Flow via Global Matching Authors: Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, Dacheng Tao We streamline the

Haofei Xu 298 Jan 04, 2023
A general 3D Object Detection codebase in PyTorch.

Det3D is the first 3D Object Detection toolbox which provides off the box implementations of many 3D object detection algorithms such as PointPillars, SECOND, PIXOR, etc, as well as state-of-the-art

Benjin Zhu 1.4k Jan 05, 2023
Unsupervised Feature Ranking via Attribute Networks.

FRANe Unsupervised Feature Ranking via Attribute Networks (FRANe) converts a dataset into a network (graph) with nodes that correspond to the features

7 Sep 29, 2022
[WACV21] Code for our paper: Samuel, Atzmon and Chechik, "From Generalized zero-shot learning to long-tail with class descriptors"

DRAGON: From Generalized zero-shot learning to long-tail with class descriptors Paper Project Website Video Overview DRAGON learns to correct the bias

Dvir Samuel 25 Dec 06, 2022