The first dataset on shadow generation for the foreground object in real-world scenes.

Overview

Object-Shadow-Generation-Dataset-DESOBA

Object Shadow Generation is to deal with the shadow inconsistency between the foreground object and the background in a composite image, that is, generating shadow for the foreground object according to background information, to make the composite image more realistic.

Our dataset DESOBA is a synthesized dataset for Object Shadow Generation. We build our dataset on the basis of Shadow-OBject Association dataset SOBA, which collects real-world images in complex scenes and provides annotated masks for object-shadow pairs. Based on SOBA dataset, we remove all the shadows to construct our DEshadowed Shadow-OBject Association(DESOBA) dataset, which can be used for shadow generation task and other shadow-related tasks as well. We illustrate the process of our DESOBA dataset construction based on SOBA dataset in the figure below.

Illustration of DESOBA dataset construction: The green arrows illustrate the process of acquiring paired data for training and evaluation. Given a ground-truth target image Ig, we manually remove all shadows to produce a deshadowed image Id. Then, we randomly select a foreground object in Ig, and replace its shadow area with the counterpart in Id to synthesize a composite image Ic without foreground shadow. Ic and Ig form a pair of input composite image and ground-truth target image. The red arrow illustrates our shadow generation task. Given Ic and its foreground mask Mfo, we aim to generate the target image Ig with foreground shadow.

Our DESOBA dataset contains 840 training images with totally 2,999 object-shadow pairs and 160 test images with totally 624 object-shadow pairs. The DESOBA dataset is provided in Baidu Cloud (access code: sipx), or Google Drive.

Prerequisites

  • Python
  • Pytorch
  • PIL

Getting Started

Installation

  • Clone this repo:
git clone https://github.com/bcmi/Object-Shadow-Generation-Dataset-DESOBA.git
cd Object-Shadow-Generation-Dataset-DESOBA
  • Download the DESOBA dataset.

  • We provide the code of obtaining training/testing tuples, each tuple contains foreground object mask, foreground shadow mask, background object mask, background shadow mask, shadow image, and synthetic composite image without foreground shadow mask. The dataloader is available in /data_processing/data/DesobaSyntheticImageGeneration_dataset.py, which can be used as dataloader in training phase or testing phase.

  • We also provide the code of visualization of training/testing tuple, run:

python Vis_Desoba_Dataset.py

Vis_Desoba_Dataset.py is available in /data_processing/.

  • We show some examples of training/testing tuples in below:

from left to right: synthetic composite image without foreground shadow, target image with foreground shadow, foreground object mask, foreground shadow mask, background object mask, and background shadow mask.

Bibtex

If you find this work is useful for your research, please cite our paper using the following BibTeX [arxiv]:

@article{hong2021shadow,
  title={Shadow Generation for Composite Image in Real-world Scenes},
  author={Hong, Yan and Niu, Li and Zhang, Jianfu and Zhang, Liqing},
  journal={arXiv preprint arXiv:2104.10338},
  year={2021}
}
Owner
BCMI
Center for Brain-Like Computing and Machine Intelligence, Shanghai Jiao Tong University.
BCMI
hipCaffe: the HIP port of Caffe

Caffe Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by the Berkeley Vision and Learning Cent

ROCm Software Platform 126 Dec 05, 2022
DeconvNet : Learning Deconvolution Network for Semantic Segmentation

DeconvNet: Learning Deconvolution Network for Semantic Segmentation Created by Hyeonwoo Noh, Seunghoon Hong and Bohyung Han at POSTECH Acknowledgement

Hyeonwoo Noh 325 Oct 20, 2022
This project contains an implemented version of Face Detection using OpenCV and Mediapipe. This is a code snippet and can be used in projects.

Live-Face-Detection Project Description: In this project, we will be using the live video feed from the camera to detect Faces. It will also detect so

Hassan Shahzad 3 Oct 02, 2021
Python package provinding tools for artistic interactive applications using AI

Documentation redrawing Python package provinding tools for artistic interactive applications using AI Created by ReDrawing Campinas team for the Open

ReDrawing Campinas 1 Sep 30, 2021
HarDNeXt: Official HarDNeXt repository

HarDNeXt-Pytorch HarDNeXt: A Stage Receptive Field and Connectivity Aware Convolution Neural Network HarDNeXt-MSEG for Medical Image Segmentation in 0

5 May 26, 2022
Code for EMNLP 2021 paper Contrastive Out-of-Distribution Detection for Pretrained Transformers.

Contra-OOD Code for EMNLP 2021 paper Contrastive Out-of-Distribution Detection for Pretrained Transformers. Requirements PyTorch Transformers datasets

Wenxuan Zhou 27 Oct 28, 2022
A benchmark dataset for emulating atmospheric radiative transfer in weather and climate models with machine learning (NeurIPS 2021 Datasets and Benchmarks Track)

ClimART - A Benchmark Dataset for Emulating Atmospheric Radiative Transfer in Weather and Climate Models Official PyTorch Implementation Using deep le

21 Dec 31, 2022
Official Implementation of DE-DETR and DELA-DETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-DETR and DELA-DETR in

Wen Wang 61 Dec 12, 2022
Face Identity Disentanglement via Latent Space Mapping [SIGGRAPH ASIA 2020]

Face Identity Disentanglement via Latent Space Mapping Description Official Implementation of the paper Face Identity Disentanglement via Latent Space

150 Dec 07, 2022
Assginment for UofT CSC420: Intro to Image Understanding

Run the code Open edge_detection.ipynb in google colab. Upload image1.jpg,image2.jpg and my_image.jpg to '/content/drive/My Drive'. chooose 'Run all'

Ziyi-Zhou 1 Feb 24, 2022
Contrastive Loss Gradient Attack (CLGA)

Contrastive Loss Gradient Attack (CLGA) Official implementation of Unsupervised Graph Poisoning Attack via Contrastive Loss Back-propagation, WWW22 Bu

12 Dec 23, 2022
This is an easy python software which allows to sort images with faces by gender and after by age.

Gender-age Classifier This is an easy python software which allows to sort images with faces by gender and after by age. Usage First install Deepface

Claudio Ciccarone 6 Sep 17, 2022
Easy-to-use,Modular and Extendible package of deep-learning based CTR models .

DeepCTR DeepCTR is a Easy-to-use,Modular and Extendible package of deep-learning based CTR models along with lots of core components layers which can

浅梦 6.6k Jan 08, 2023
Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set (CVPRW 2019). A PyTorch implementation.

Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set —— PyTorch implementation This is an unofficial offici

Sicheng Xu 833 Dec 28, 2022
Yolov3 pytorch implementation

YOLOV3 Pytorch实现 在bubbliiing大佬代码的基础上进行了修改,添加了部分注释。 预训练模型 预训练模型来源于bubbliiing。 链接:https://pan.baidu.com/s/1ncREw6Na9ycZptdxiVMApw 提取码:appk 训练自己的数据集 按照VO

4 Aug 27, 2022
Pytorch implementation of the paper Time-series Generative Adversarial Networks

TimeGAN-pytorch Pytorch implementation of the paper Time-series Generative Adversarial Networks presented at NeurIPS'19. Jinsung Yoon, Daniel Jarrett

Zhiwei ZHANG 21 Nov 24, 2022
Memory-efficient optimum einsum using opt_einsum planning and PyTorch kernels.

opt-einsum-torch There have been many implementations of Einstein's summation. numpy's numpy.einsum is the least efficient one as it only runs in sing

Haoyan Huo 9 Nov 18, 2022
SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks (Scientific Reports)

SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks Molecular interaction networks are powerful resources for the discovery. While dee

Kexin Huang 49 Oct 15, 2022
Implementation for Shape from Polarization for Complex Scenes in the Wild

sfp-wild Implementation for Shape from Polarization for Complex Scenes in the Wild project website | paper Code and dataset will be released soon. Int

Chenyang LEI 41 Dec 23, 2022