KGDet: Keypoint-Guided Fashion Detection (AAAI 2021)

Related tags

Deep LearningKGDet
Overview

KGDet: Keypoint-Guided Fashion Detection (AAAI 2021)

This is an official implementation of the AAAI-2021 paper "KGDet: Keypoint-Guided Fashion Detection".

Architecture

Installation

To avoid problems, please install this repo in a pure conda virtual environment.

First, enter the root directory of this repo. Install CUDA and PyTorch with conda.

conda install -c pytorch -c conda-forge pytorch==1.4.0 torchvision==0.5.0 cudatoolkit-dev=10.1 

Then, install other dependencies with pip.

pip install -r requirements.txt

DeepFashion2API

cd deepfashion2_api/PythonAPI
pip install -e .

main code

Our code is based on mmdetection, which is a clean open-sourced project for benchmarking object detection methods.

cd ../../mmdetection
python setup.py develop

Now the repo is ready, let's go back to the root directory.

cd ..

Data Preparation

DeepFashion2

If you need to run experiments on the entire DeepFashion2 dataset, please refer to DeepFashion2 for detailed guidance. Otherwise, you can skip to the Demo dataset subsection.

After downloading and unpacking the dataset, please create a soft link from the code repository to the dataset's root directory.

ln -s <root dir of DeepFashion2> data/deepfashion2

Demo dataset

We provide a subset (32 images) of DeepFashion2 to enable quick-experiment.

Checkpoints

The checkpoints can be fetched from this OneDrive link.

Experiments

Demo

Test with 1 gpu

./mmdetection/tools/dist_test.sh configs/kgdet_moment_r50_fpn_1x-demo.py checkpoints/KGDet_epoch-12.pth 1 --json_out work_dirs/demo_KGDet.json --eval bbox keypoints
  • Results files will be stored as work_dirs/demo_KGDet.json.
  • If you only need the prediction results, you can drop --eval and its arguments.

DeepFashion2

Train with 4 gpus

./mmdetection/tools/dist_train.sh configs/kgdet_moment_r50_fpn_1x-deepfashion2.py 4 --validate --work_dir work_dirs/TRAIN_KGDet
  • The running log and checkpoints will be stored in the work_dirs/TRAIN_KGDet directory according to the argument --work_dir.
  • --validate evokes a validation section after each training epoch.

Test with 4 gpus

./mmdetection/tools/dist_test.sh configs/kgdet_moment_r50_fpn_1x-deepfashion2.py checkpoints/KGDet_epoch-12.pth 4 --json_out work_dirs/result_KGDet.json --eval bbox keypoints
  • Results files will be stored as work_dirs/result_KGDet.json.

Customization

If you would like to run our model on your own data, you can imitate the structure of the demo_dataset (an image directory plus a JSON file), and adjust the arguments in the configuration file.

Acknowledgment

This repo is built upon RepPoints and mmdetection.

@inproceedings{qian2021kgdet,
  title={KGDet: Keypoint-Guided Fashion Detection},
  author={Qian, Shenhan and Lian, Dongze and Zhao, Binqiang and Liu, Tong and Zhu, Bohui and Li, Hai and Gao, Shenghua},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  volume={35},
  number={3},
  pages={2449--2457},
  year={2021}
}
Owner
Qian Shenhan
Qian Shenhan
Search and filter videos based on objects that appear in them using convolutional neural networks

Thingscoop: Utility for searching and filtering videos based on their content Description Thingscoop is a command-line utility for analyzing videos se

Anastasis Germanidis 354 Dec 04, 2022
Official codes: Self-Supervised Learning by Estimating Twin Class Distribution

TWIST: Self-Supervised Learning by Estimating Twin Class Distributions Codes and pretrained models for TWIST: @article{wang2021self, title={Self-Sup

Bytedance Inc. 85 Dec 15, 2022
Re-implememtation of MAE (Masked Autoencoders Are Scalable Vision Learners) using PyTorch.

mae-repo PyTorch re-implememtation of "masked autoencoders are scalable vision learners". In this repo, it heavily borrows codes from codebase https:/

Peng Qiao 1 Dec 14, 2021
Low-dose Digital Mammography with Deep Learning

Impact of loss functions on the performance of a deep neural network designed to restore low-dose digital mammography ====== This repository contains

WANG-AXIS 6 Dec 13, 2022
Code for CMaskTrack R-CNN (proposed in Occluded Video Instance Segmentation)

CMaskTrack R-CNN for OVIS This repo serves as the official code release of the CMaskTrack R-CNN model on the Occluded Video Instance Segmentation data

Q . J . Y 61 Nov 25, 2022
Self-Supervised Learning

Self-Supervised Learning Features self_supervised offers features like modular framework support for multi-gpu training using PyTorch Lightning easy t

Robin 1 Dec 14, 2021
Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021, Pytorch)

S2VD Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021) Requirements and Dependencies Ubuntu 16.04, cuda 10.0 Python 3.6.10, P

Zongsheng Yue 53 Nov 23, 2022
SmoothGrad implementation in PyTorch

SmoothGrad implementation in PyTorch PyTorch implementation of SmoothGrad: removing noise by adding noise. Vanilla Gradients SmoothGrad Guided backpro

SSKH 143 Jan 05, 2023
[CVPR 2021] VirTex: Learning Visual Representations from Textual Annotations

VirTex: Learning Visual Representations from Textual Annotations Karan Desai and Justin Johnson University of Michigan CVPR 2021 arxiv.org/abs/2006.06

Karan Desai 533 Dec 24, 2022
UMPNet: Universal Manipulation Policy Network for Articulated Objects

UMPNet: Universal Manipulation Policy Network for Articulated Objects Zhenjia Xu, Zhanpeng He, Shuran Song Columbia University Robotics and Automation

Columbia Artificial Intelligence and Robotics Lab 33 Dec 03, 2022
Apache Flink

Apache Flink Apache Flink is an open source stream processing framework with powerful stream- and batch-processing capabilities. Learn more about Flin

The Apache Software Foundation 20.4k Dec 30, 2022
A Tensorflow implementation of CapsNet based on Geoffrey Hinton's paper Dynamic Routing Between Capsules

CapsNet-Tensorflow A Tensorflow implementation of CapsNet based on Geoffrey Hinton's paper Dynamic Routing Between Capsules Notes: The current version

Huadong Liao 3.8k Dec 29, 2022
TorchOk - The toolkit for fast Deep Learning experiments in Computer Vision

TorchOk - The toolkit for fast Deep Learning experiments in Computer Vision

52 Dec 23, 2022
Neural Motion Learner With Python

Neural Motion Learner Introduction This work is to extract skeletal structure from volumetric observations and to learn motion dynamics from the detec

Jinseok Bae 14 Nov 28, 2022
PAMI stands for PAttern MIning. It constitutes several pattern mining algorithms to discover interesting patterns in transactional/temporal/spatiotemporal databases

Introduction PAMI stands for PAttern MIning. It constitutes several pattern mining algorithms to discover interesting patterns in transactional/tempor

RAGE UDAY KIRAN 43 Jan 08, 2023
Practical Single-Image Super-Resolution Using Look-Up Table

Practical Single-Image Super-Resolution Using Look-Up Table [Paper] Dependency Python 3.6 PyTorch glob numpy pillow tqdm tensorboardx 1. Training deep

Younghyun Jo 116 Dec 23, 2022
C3D is a modified version of BVLC caffe to support 3D ConvNets.

C3D C3D is a modified version of BVLC caffe to support 3D convolution and pooling. The main supporting features include: Training or fine-tuning 3D Co

Meta Archive 1.1k Nov 14, 2022
Convert weight file.pth to weight file.blob

CONVERT YOUR MODEL TO IR FORMAT INSTALLATION OpenVino Toolkit Download openvinotoolkit 2021.3 version : Link Instruction of installation : Link Pytorc

Tran Anh Tuan 3 Nov 18, 2021
PyTorch implementation of "A Two-Stage End-to-End System for Speech-in-Noise Hearing Aid Processing"

Implementation of the Sheffield entry for the first Clarity enhancement challenge (CEC1) This repository contains the PyTorch implementation of "A Two

10 Aug 19, 2022
Official repo for SemanticGAN https://nv-tlabs.github.io/semanticGAN/

SemanticGAN This is the official code for: Semantic Segmentation with Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Generalizat

151 Dec 28, 2022