Original Pytorch Implementation of FLAME: Facial Landmark Heatmap Activated Multimodal Gaze Estimation

Overview

FLAME

Original Pytorch Implementation of FLAME: Facial Landmark Heatmap Activated Multimodal Gaze Estimation, accepted at the 17th IEEE Internation Conference on Advanced Video and Signal-based Surveillance, AVSS 2021, Virtual, November 16-19, 2021.

arXiv Preprint: arXiv

Dependencies used

  • python v3.6.13
  • cuda v10.2
  • numpy v1.19.2
  • pandas v1.1.3
  • opencv-python-headless v4.5.1.48 (or use equivalent opencv)
  • torch v1.8.0
  • torchvision v0.9.0
  • scipy v1.5.2
  • matplotlib v3.3.4

FLAME - Model and Results

Model Architecture for FLAME -

FLAME Architecture

Results -

Experimental Settings ColumbiaGaze EYEDIAP
FLAME mean = 4.64 deg, std = 2.86 deg mean = 4.62 deg, std = 2.93 deg
F-AO mean = 5.06 deg, std = 3.13 deg mean = 4.80 deg, std = 3.02 deg
F-AF mean = 5.88 deg, std = 3.06 deg mean = 5.30 deg, std = 3.03 deg
F-B mean = 5.93 deg, std = 3.20 deg mean = 5.32 deg, std = 3.08 deg

Project Installation

This code requires Python 3, Pytorch, Cuda and other dependencies as listed above. Open Command Prompt/Terminal and use the following commands to clone the project and install dependencies (python, pip are pre-requisites) -

$ git clone https://github.com/neelabhsinha/flame.git
$ cd flame
$ pip3 install -r requirements.txt
$ python3 main.py -h

Alternatively you can install the above dependencies in your environment as you prefer. The exact versions used in this project are listed above. To be able to do necessary data preprocessing, you would also optionally require Openface 2.0 (or any other 2D landmark extractor) and RetinaFace (or any other way to extract face crops). These are optional requirements and feel free to use any other toolkit to achieve the required objective. For more details read through the section 'Preparing the dataset'.

Project Description

The functions in the code have doctext which describe the purpose of the function and their parameters, return type.

Files in the project are described in the following table -

File Description
datasets/data.py Contains dataset class and sampler class used by the data loader in training/testing loop to generate data samples (edit this if you organize the data differently as compared to how it is mentioned in 'preparing the dataset' section).
losses/angular_loss.py Pytorch definition of 3D angular loss function used for evaluations.
losses/vector_loss.py Pytorch definition of vector difference loss function used for training.
models Contains Pytorch definition of models proposed in the paper as defined in the table below.
metadata Contains dataset metadata like split, max-min values as explained in the below sections.
utils/data_split.py Contains function to split the data into train, test and validation sets and save it at the desired place (see 'optional configurations' section below for details).
utils/helpers.py Contains function to crop eye sample randomly, used by the dataset class in datasets/data.py, and function that generates heatmap, used by get_and_save_heatmap function in utils/data_preprocess.py (all functions defined here are used by other functions and need not be used directly by the programmer).
utils/preprocess.py Contains preprocessing functions, like getting head_pose angles from rotation matrix, outermost method to extract 2D facial landmark heatmap for entire dataset, get max-min values of different modalities of a dataset, and a few helper functions (see 'optional configurations' and 'preparing the dataset' sections below for more details).
utils/train.py Contains 2 functions, one function to train the network containing training loop and related functionalities like loading a checkpoint, saving epoch results, and another method incorporating the entire forward pass pipeline which can be used for training, testing, and for any other purpose as desired (see 'training' section below for details).
utils/test.py Contains method that runs evaluations on test set of a data and saves the predictions (see 'evaluations/testing' section below).
config.py Contains configuration veriables like dataset paths, project path, path to store weights, logs, and training hyperparameters like maximum epoch, batch size. Edit this file before running the project with appropriate paths.
main.py Contains main code that drives the entire project as per arguments provided (details are explained in following sections).

Each model as described in the paper is identified with a unique key in this code which we shall address by model_key in this readme. The keys to those models along with the pretrained checkpoints (containing model weights, and other variables related to the final state) are given in the table below -

Model Name Model key (model_key) Model definition Columbiagaze Checkpoint EYEDIAP Checkpoint
FLAME mmtm-fusion models/mmtm_fusion.py Checkpoint Checkpoint
F-AO concatenated-fusion models/aggregation_only.py TBA TBA
F-AF additive-fusion models/additive_fusion.py TBA TBA
F-B baseline models/baseline.py TBA TBA

We shall explain how to use this model_key when we cover how to run the code in the below sections. The format of these checkpoints is in the form of dictionary with following schema -

{
  'epoch': epoch number, 
  'model_state_dict': model_weights, 
  'optimizer_state_dict': optimizer state,
  'scheduler_state_dict': scheduler_state,
  'loss_train': mean_training_loss, 
  'loss_cv': mean_cv_loss
}

Prepraring the dataset

Prepare a directory structure as the following and add the root in the dataset_paths dictionary in config.py.

dataset_root
│
└───images
│   │───subject01
│   │   │   1.npy
│   |   │   2.npy
│   |   │   ...
│   │
│   └───subject02
│   |   │   1.npy
│   |   │   2.npy
│   |   │   ...
│   |....
│   
└───heatmaps
│   │───subject01
│   │   │   1.npy
│   |   │   2.npy
│   |   │   ...
│   │
│   └───subject02
│   |   │   1.npy
│   |   │   2.npy
│   |   │   ...
│   |....
|
└───facial_landmarks_2d
│   │───subject01.pkl
│   |───subject02.pkl
|   |....
│   
|
└───head_pose
│   │───subject01.pkl
│   |───subject02.pkl
|   |....
│   
└───gaze_target
│   │───subject01.pkl
│   |───subject02.pkl
|   |....
│   
  • images - RGB images as numpy arrays with dimension (height, width, channels) of the complete face crop. Stored as one folder for each subject, and images of the particular subject contained inside as numpy arrays.
  • heatmaps - 2D landmark heatmaps as numpy arrays with dimension (height, width, channels) of the complete face crop. Stored as one folder for each subject, and images of the particular subject contained inside as numpy arrays.
  • facial_landmarks_2d - 2D facial landmarks in the form of numpy arrays saved as pickle (index i of a file contains data corresponding to (i+1)th image and heatmap file inside the given subject folder with the same name as that of the pickle file).
  • head_pose - Head pose angles in the form of numpy arrays of the type [pitch, yaw, roll] angle numpy arrays (index i of a file contains data corresponding to (i+1)th image and heatmap file inside the given subject folder with the same name as that of the pickle file). If not available, headpose can be used from the output of Openface 2.0.
  • gaze_angles - Gaze angles in the form of numpy arrays of the type [yaw, pitch] angle numpy arrays (index i of a file contains data corresponding to (i+1)th image and heatmap file inside the given subject folder with the same name as that of the pickle file). This is the ground truth.

Steps -

  1. Extract Face crops from RetinaFace and zero-pad them to nearest 4:5 ratio (or any other way to extract face crops).
  2. Crop them to 384 * 450 pixels. The dimension of RGB images, hence, will be 384*450*3.
  3. Run Openface 2.0 on these images (or any other way to extract landmarks in desired order as given by Openface)
  4. Collect the 2D facial landmarks from it in the above directory structure as per the given instruction above. Each element will be a 112-dimensional numpy array (for 28 2D landmarks for both eyes in the format (fl_x_0, fl_x_1,...,fl_x_55,fl_y_0,fl_y_1,...,fl_y_55), with 0-27 index for the right eye and 28-55 for the left eye. There will be same number of such elements as the number of images in corresponding images folder. So, for a subject, this will be a numpy array of dimensions (num_images, 112).
  5. Collect the images, head pose, and gaze targets in the above directory structure as per given instructions. To generate head_pose angles from rotation matrix, use get_head_pose_angles from utils/preprocess.py. For a subject, dimension of head pose will be (number of images, 3) and gaze targets will be (number of images, 2), both as numpy arrays.
  6. Add the root dataset directory to dataset_paths by dataset_name:dataset_path in config.py (Use this dataset_name everywhere in the code for all dataset name related parameters in the code).
  7. Generate heatmaps from the 2D landmarks after completing step 1-6. You can use the function get_and_save_heatmap given in utils/preprocess.py with dataset_name as parameter. Use the following command -
$ python3 main.py --get_heatmap --dataset <dataset_name>
  1. It should create heatmaps directory and save the heatmaps there, with same format as that of images, and each heatmap to be 384*480*28. Corresponding landmarks for left and the right eye will be in the same channel, and one will be cropped out during loading the data when eye crops are generated. This is done to make the heatmap less sparse and save memory during storage, while also make data loading efficient.

The dataset directory is now ready.

Notes

  • Maintain 1...n continuous numbers for images, heatmaps and save other data in pickle at corresponding 0-(n-1) indices
  • Take care of the file formats

Other Configurations required

Please do the following before running the code

  1. Please add all the dependencies in your environment which support the given version.
  2. In config.py file, change/add all the dataset paths, and other parameters as defined.

Optional Configurations

Few other metadata that are required but is already given along with this repository for our experiments are described below. You may run it on your own but it's not compulsory.

  1. Generating Split - Decide which folders will be in train, test, and val splits. Can be done using the following script (our split is available in metadata/splits directory) -
$ python3 main.py --split_data --split_nature cross-person --data <dataset_name>

Function is available at utils/data_split.py for viewing the schema of the file

  1. Getting maximum and minimum values of each input and output - Used for normalization purposes and is extracted only for the training data. For our split and data, the parameters are given in metadata/data_statistics in the form of a dictionary stored as pickle. Use the following command to extract these parameters -
$ python3 main.py --get_data_stats --dataset <dataset_name>

Function is available at utils/preprocess.py by the name get_mean_and_std

Evaluations/Testing

  1. Set up the project using above steps
  2. Download the weights from the specified locations
  3. Execute the following command -
$ python3 main.py --test <model_key> --dataset <dataset_name of training dataset> --test_data <dataset_name of testing dataset> --load_checkpoint <complete path of the checkpoint on which model is to be tested>

A csv file will be stored at the test_path location as specified in config.py by the name '<train_dataset_name>_<test_dataset_name>_<model_key>.csv' having the following schema for all provided images in order -

index, yaw_p, pitch_p, yaw_t, pitch_t, loss_3d, error_y, error_p

Apart from this, a log file is maintained by the name testing_<dataset_name>_<model_name>_cross-person.log in the loggers_loc directory.

Note -

  • To generate predictions on the customized pipeline, you can create an input pipeline on your own and use the function forward_propagation inside utils/train.py and provide the inputs to the same. It will return you the values in order of a tuple ((predicted_yaw, predicted_pitch),(true_yaw, true_pitch), error) of type (tensor, tensor, float).

Training

  1. Set up the project using above steps
  2. Execute the following command -
$ python3 main.py --train <model_key> --dataset <dataset_name>

To change training hyperparameters, change variables in config.py file

Training from a checkpoint -

$ python3 main.py --train <model_key< --dataset <dataset_name> --load_checkpoint <complete path of checkpoint file>

A log file is maintained by the name training_<dataset_name>_<model_name>_cross-person.log in the loggers_loc directory logging details of losses after each epoch is completed.

Citation

If you found our work helpful in your use case, please cite the following paper -

Owner
Neelabh Sinha
Student, BITS, Pilani
Neelabh Sinha
BERT model training impelmentation using 1024 A100 GPUs for MLPerf Training v1.1

Pre-trained checkpoint and bert config json file Location of checkpoint and bert config json file This MLCommons members Google Drive location contain

SAIT (Samsung Advanced Institute of Technology) 12 Apr 27, 2022
Scientific Computation Methods in C and Python (Open for Hacktoberfest 2021)

Sci - cpy README is a stub. Do expand it. Objective This repository is meant to be a ready reference for scientific computation methods. Do ⭐ it if yo

Sandip Dutta 7 Oct 12, 2022
SOFT: Softmax-free Transformer with Linear Complexity, NeurIPS 2021 Spotlight

SOFT: Softmax-free Transformer with Linear Complexity SOFT: Softmax-free Transformer with Linear Complexity, Jiachen Lu, Jinghan Yao, Junge Zhang, Xia

Fudan Zhang Vision Group 272 Dec 25, 2022
Pytorch implementation of Hinton's Dynamic Routing Between Capsules

pytorch-capsule A Pytorch implementation of Hinton's "Dynamic Routing Between Capsules". https://arxiv.org/pdf/1710.09829.pdf Thanks to @naturomics fo

Tim Omernick 625 Oct 27, 2022
Implementation of Basic Machine Learning Algorithms on small datasets using Scikit Learn.

Basic Machine Learning Algorithms All the basic Machine Learning Algorithms are implemented in Python using libraries Acknowledgements Machine Learnin

Piyal Banik 47 Oct 16, 2022
MPRNet-Cloud-removal: Progressive cloud removal

MPRNet-Cloud-removal Progressive cloud removal Requirements 1.Pytorch = 1.0 2.Python 3 3.NVIDIA GPU + CUDA 9.0 4.Tensorboard Installation 1.Clone the

Semi 95 Dec 18, 2022
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022
Easy and Efficient Object Detector

EOD Easy and Efficient Object Detector EOD (Easy and Efficient Object Detection) is a general object detection model production framework. It aim on p

381 Jan 01, 2023
An implementation of shampoo

shampoo.pytorch An implementation of shampoo, proposed in Shampoo : Preconditioned Stochastic Tensor Optimization by Vineet Gupta, Tomer Koren and Yor

Ryuichiro Hataya 69 Sep 10, 2022
LeetCode Solutions https://t.me/tenvlad

leetcode LeetCode Solutions groupped by common patterns YouTube: https://www.youtube.com/c/vladten Telegram: https://t.me/nilinterface Problems source

Vlad Ten 158 Dec 29, 2022
✔️ Visual, reactive testing library for Julia. Time machine included.

PlutoTest.jl (alpha release) Visual, reactive testing library for Julia A macro @test that you can use to verify your code's correctness. But instead

Pluto 68 Dec 20, 2022
Code for MSc Quantitative Finance Dissertation

MSc Dissertation Code ReadMe Sector Volatility Prediction Performance Using GARCH Models and Artificial Neural Networks Curtis Nybo MSc Quantitative F

2 Dec 01, 2022
A collection of Reinforcement Learning algorithms from Sutton and Barto's book and other research papers implemented in Python.

Reinforcement-Learning-Notebooks A collection of Reinforcement Learning algorithms from Sutton and Barto's book and other research papers implemented

Pulkit Khandelwal 1k Dec 28, 2022
3 Apr 20, 2022
NCNN implementation of Real-ESRGAN. Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

NCNN implementation of Real-ESRGAN. Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

Xintao 593 Jan 03, 2023
Hyperbolic Procrustes Analysis Using Riemannian Geometry

Hyperbolic Procrustes Analysis Using Riemannian Geometry The code in this repository creates the figures presented in this article: Please notice that

Ronen Talmon's Lab 2 Jan 08, 2023
S2s2net - Sentinel-2 Super-Resolution Segmentation Network

S2S2Net Sentinel-2 Super-Resolution Segmentation Network Getting started Install

Wei Ji 10 Nov 10, 2022
A 3D sparse LBM solver implemented using Taichi

taichi_LBM3D Background Taichi_LBM3D is a 3D lattice Boltzmann solver with Multi-Relaxation-Time collision scheme and sparse storage structure impleme

Jianhui Yang 121 Jan 06, 2023
Code for the Population-Based Bandits Algorithm, presented at NeurIPS 2020.

Population-Based Bandits (PB2) Code for the Population-Based Bandits (PB2) Algorithm, from the paper Provably Efficient Online Hyperparameter Optimiza

Jack Parker-Holder 22 Nov 16, 2022