Original Pytorch Implementation of FLAME: Facial Landmark Heatmap Activated Multimodal Gaze Estimation

Overview

FLAME

Original Pytorch Implementation of FLAME: Facial Landmark Heatmap Activated Multimodal Gaze Estimation, accepted at the 17th IEEE Internation Conference on Advanced Video and Signal-based Surveillance, AVSS 2021, Virtual, November 16-19, 2021.

arXiv Preprint: arXiv

Dependencies used

  • python v3.6.13
  • cuda v10.2
  • numpy v1.19.2
  • pandas v1.1.3
  • opencv-python-headless v4.5.1.48 (or use equivalent opencv)
  • torch v1.8.0
  • torchvision v0.9.0
  • scipy v1.5.2
  • matplotlib v3.3.4

FLAME - Model and Results

Model Architecture for FLAME -

FLAME Architecture

Results -

Experimental Settings ColumbiaGaze EYEDIAP
FLAME mean = 4.64 deg, std = 2.86 deg mean = 4.62 deg, std = 2.93 deg
F-AO mean = 5.06 deg, std = 3.13 deg mean = 4.80 deg, std = 3.02 deg
F-AF mean = 5.88 deg, std = 3.06 deg mean = 5.30 deg, std = 3.03 deg
F-B mean = 5.93 deg, std = 3.20 deg mean = 5.32 deg, std = 3.08 deg

Project Installation

This code requires Python 3, Pytorch, Cuda and other dependencies as listed above. Open Command Prompt/Terminal and use the following commands to clone the project and install dependencies (python, pip are pre-requisites) -

$ git clone https://github.com/neelabhsinha/flame.git
$ cd flame
$ pip3 install -r requirements.txt
$ python3 main.py -h

Alternatively you can install the above dependencies in your environment as you prefer. The exact versions used in this project are listed above. To be able to do necessary data preprocessing, you would also optionally require Openface 2.0 (or any other 2D landmark extractor) and RetinaFace (or any other way to extract face crops). These are optional requirements and feel free to use any other toolkit to achieve the required objective. For more details read through the section 'Preparing the dataset'.

Project Description

The functions in the code have doctext which describe the purpose of the function and their parameters, return type.

Files in the project are described in the following table -

File Description
datasets/data.py Contains dataset class and sampler class used by the data loader in training/testing loop to generate data samples (edit this if you organize the data differently as compared to how it is mentioned in 'preparing the dataset' section).
losses/angular_loss.py Pytorch definition of 3D angular loss function used for evaluations.
losses/vector_loss.py Pytorch definition of vector difference loss function used for training.
models Contains Pytorch definition of models proposed in the paper as defined in the table below.
metadata Contains dataset metadata like split, max-min values as explained in the below sections.
utils/data_split.py Contains function to split the data into train, test and validation sets and save it at the desired place (see 'optional configurations' section below for details).
utils/helpers.py Contains function to crop eye sample randomly, used by the dataset class in datasets/data.py, and function that generates heatmap, used by get_and_save_heatmap function in utils/data_preprocess.py (all functions defined here are used by other functions and need not be used directly by the programmer).
utils/preprocess.py Contains preprocessing functions, like getting head_pose angles from rotation matrix, outermost method to extract 2D facial landmark heatmap for entire dataset, get max-min values of different modalities of a dataset, and a few helper functions (see 'optional configurations' and 'preparing the dataset' sections below for more details).
utils/train.py Contains 2 functions, one function to train the network containing training loop and related functionalities like loading a checkpoint, saving epoch results, and another method incorporating the entire forward pass pipeline which can be used for training, testing, and for any other purpose as desired (see 'training' section below for details).
utils/test.py Contains method that runs evaluations on test set of a data and saves the predictions (see 'evaluations/testing' section below).
config.py Contains configuration veriables like dataset paths, project path, path to store weights, logs, and training hyperparameters like maximum epoch, batch size. Edit this file before running the project with appropriate paths.
main.py Contains main code that drives the entire project as per arguments provided (details are explained in following sections).

Each model as described in the paper is identified with a unique key in this code which we shall address by model_key in this readme. The keys to those models along with the pretrained checkpoints (containing model weights, and other variables related to the final state) are given in the table below -

Model Name Model key (model_key) Model definition Columbiagaze Checkpoint EYEDIAP Checkpoint
FLAME mmtm-fusion models/mmtm_fusion.py Checkpoint Checkpoint
F-AO concatenated-fusion models/aggregation_only.py TBA TBA
F-AF additive-fusion models/additive_fusion.py TBA TBA
F-B baseline models/baseline.py TBA TBA

We shall explain how to use this model_key when we cover how to run the code in the below sections. The format of these checkpoints is in the form of dictionary with following schema -

{
  'epoch': epoch number, 
  'model_state_dict': model_weights, 
  'optimizer_state_dict': optimizer state,
  'scheduler_state_dict': scheduler_state,
  'loss_train': mean_training_loss, 
  'loss_cv': mean_cv_loss
}

Prepraring the dataset

Prepare a directory structure as the following and add the root in the dataset_paths dictionary in config.py.

dataset_root
│
└───images
│   │───subject01
│   │   │   1.npy
│   |   │   2.npy
│   |   │   ...
│   │
│   └───subject02
│   |   │   1.npy
│   |   │   2.npy
│   |   │   ...
│   |....
│   
└───heatmaps
│   │───subject01
│   │   │   1.npy
│   |   │   2.npy
│   |   │   ...
│   │
│   └───subject02
│   |   │   1.npy
│   |   │   2.npy
│   |   │   ...
│   |....
|
└───facial_landmarks_2d
│   │───subject01.pkl
│   |───subject02.pkl
|   |....
│   
|
└───head_pose
│   │───subject01.pkl
│   |───subject02.pkl
|   |....
│   
└───gaze_target
│   │───subject01.pkl
│   |───subject02.pkl
|   |....
│   
  • images - RGB images as numpy arrays with dimension (height, width, channels) of the complete face crop. Stored as one folder for each subject, and images of the particular subject contained inside as numpy arrays.
  • heatmaps - 2D landmark heatmaps as numpy arrays with dimension (height, width, channels) of the complete face crop. Stored as one folder for each subject, and images of the particular subject contained inside as numpy arrays.
  • facial_landmarks_2d - 2D facial landmarks in the form of numpy arrays saved as pickle (index i of a file contains data corresponding to (i+1)th image and heatmap file inside the given subject folder with the same name as that of the pickle file).
  • head_pose - Head pose angles in the form of numpy arrays of the type [pitch, yaw, roll] angle numpy arrays (index i of a file contains data corresponding to (i+1)th image and heatmap file inside the given subject folder with the same name as that of the pickle file). If not available, headpose can be used from the output of Openface 2.0.
  • gaze_angles - Gaze angles in the form of numpy arrays of the type [yaw, pitch] angle numpy arrays (index i of a file contains data corresponding to (i+1)th image and heatmap file inside the given subject folder with the same name as that of the pickle file). This is the ground truth.

Steps -

  1. Extract Face crops from RetinaFace and zero-pad them to nearest 4:5 ratio (or any other way to extract face crops).
  2. Crop them to 384 * 450 pixels. The dimension of RGB images, hence, will be 384*450*3.
  3. Run Openface 2.0 on these images (or any other way to extract landmarks in desired order as given by Openface)
  4. Collect the 2D facial landmarks from it in the above directory structure as per the given instruction above. Each element will be a 112-dimensional numpy array (for 28 2D landmarks for both eyes in the format (fl_x_0, fl_x_1,...,fl_x_55,fl_y_0,fl_y_1,...,fl_y_55), with 0-27 index for the right eye and 28-55 for the left eye. There will be same number of such elements as the number of images in corresponding images folder. So, for a subject, this will be a numpy array of dimensions (num_images, 112).
  5. Collect the images, head pose, and gaze targets in the above directory structure as per given instructions. To generate head_pose angles from rotation matrix, use get_head_pose_angles from utils/preprocess.py. For a subject, dimension of head pose will be (number of images, 3) and gaze targets will be (number of images, 2), both as numpy arrays.
  6. Add the root dataset directory to dataset_paths by dataset_name:dataset_path in config.py (Use this dataset_name everywhere in the code for all dataset name related parameters in the code).
  7. Generate heatmaps from the 2D landmarks after completing step 1-6. You can use the function get_and_save_heatmap given in utils/preprocess.py with dataset_name as parameter. Use the following command -
$ python3 main.py --get_heatmap --dataset <dataset_name>
  1. It should create heatmaps directory and save the heatmaps there, with same format as that of images, and each heatmap to be 384*480*28. Corresponding landmarks for left and the right eye will be in the same channel, and one will be cropped out during loading the data when eye crops are generated. This is done to make the heatmap less sparse and save memory during storage, while also make data loading efficient.

The dataset directory is now ready.

Notes

  • Maintain 1...n continuous numbers for images, heatmaps and save other data in pickle at corresponding 0-(n-1) indices
  • Take care of the file formats

Other Configurations required

Please do the following before running the code

  1. Please add all the dependencies in your environment which support the given version.
  2. In config.py file, change/add all the dataset paths, and other parameters as defined.

Optional Configurations

Few other metadata that are required but is already given along with this repository for our experiments are described below. You may run it on your own but it's not compulsory.

  1. Generating Split - Decide which folders will be in train, test, and val splits. Can be done using the following script (our split is available in metadata/splits directory) -
$ python3 main.py --split_data --split_nature cross-person --data <dataset_name>

Function is available at utils/data_split.py for viewing the schema of the file

  1. Getting maximum and minimum values of each input and output - Used for normalization purposes and is extracted only for the training data. For our split and data, the parameters are given in metadata/data_statistics in the form of a dictionary stored as pickle. Use the following command to extract these parameters -
$ python3 main.py --get_data_stats --dataset <dataset_name>

Function is available at utils/preprocess.py by the name get_mean_and_std

Evaluations/Testing

  1. Set up the project using above steps
  2. Download the weights from the specified locations
  3. Execute the following command -
$ python3 main.py --test <model_key> --dataset <dataset_name of training dataset> --test_data <dataset_name of testing dataset> --load_checkpoint <complete path of the checkpoint on which model is to be tested>

A csv file will be stored at the test_path location as specified in config.py by the name '<train_dataset_name>_<test_dataset_name>_<model_key>.csv' having the following schema for all provided images in order -

index, yaw_p, pitch_p, yaw_t, pitch_t, loss_3d, error_y, error_p

Apart from this, a log file is maintained by the name testing_<dataset_name>_<model_name>_cross-person.log in the loggers_loc directory.

Note -

  • To generate predictions on the customized pipeline, you can create an input pipeline on your own and use the function forward_propagation inside utils/train.py and provide the inputs to the same. It will return you the values in order of a tuple ((predicted_yaw, predicted_pitch),(true_yaw, true_pitch), error) of type (tensor, tensor, float).

Training

  1. Set up the project using above steps
  2. Execute the following command -
$ python3 main.py --train <model_key> --dataset <dataset_name>

To change training hyperparameters, change variables in config.py file

Training from a checkpoint -

$ python3 main.py --train <model_key< --dataset <dataset_name> --load_checkpoint <complete path of checkpoint file>

A log file is maintained by the name training_<dataset_name>_<model_name>_cross-person.log in the loggers_loc directory logging details of losses after each epoch is completed.

Citation

If you found our work helpful in your use case, please cite the following paper -

Owner
Neelabh Sinha
Student, BITS, Pilani
Neelabh Sinha
Code for Dual Contrastive Learning for Unsupervised Image-to-Image Translation, NTIRE, CVPRW 2021.

arXiv Dual Contrastive Learning Adversarial Generative Networks (DCLGAN) We provide our PyTorch implementation of DCLGAN, which is a simple yet powerf

119 Dec 04, 2022
A light and fast one class detection framework for edge devices. We provide face detector, head detector, pedestrian detector, vehicle detector......

A Light and Fast Face Detector for Edge Devices Big News: LFD, which is a big update of LFFD, now is released (2021.03.09). It is strongly recommended

YonghaoHe 1.3k Dec 25, 2022
This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies.

Deformable Neural Radiance Fields This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies. Project Page Paper Video This codebase conta

Google 1k Jan 09, 2023
The reference baseline of final exam for XMU machine learning course

Mini-NICO Baseline The baseline is a reference method for the final exam of machine learning course. Requirements Installation we use /python3.7 /torc

JoaquinChou 3 Dec 29, 2021
Simple Baselines for Human Pose Estimation and Tracking

Simple Baselines for Human Pose Estimation and Tracking News Our new work High-Resolution Representations for Labeling Pixels and Regions is available

Microsoft 2.7k Jan 05, 2023
TensorFlow (Python API) implementation of Neural Style

neural-style-tf This is a TensorFlow implementation of several techniques described in the papers: Image Style Transfer Using Convolutional Neural Net

Cameron 3.1k Jan 02, 2023
ML course - EPFL Machine Learning Course, Fall 2021

EPFL Machine Learning Course CS-433 Machine Learning Course, Fall 2021 Repository for all lecture notes, labs and projects - resources, code templates

EPFL Machine Learning and Optimization Laboratory 1k Jan 04, 2023
This repository contains pre-trained models and some evaluation code for our paper Towards Unsupervised Dense Information Retrieval with Contrastive Learning

Contriever: Towards Unsupervised Dense Information Retrieval with Contrastive Learning This repository contains pre-trained models and some evaluation

Meta Research 207 Jan 08, 2023
Stream images from a connected camera over MQTT, view using Streamlit, record to file and sqlite

mqtt-camera-streamer Summary: Publish frames from a connected camera or MJPEG/RTSP stream to an MQTT topic, and view the feed in a browser on another

Robin Cole 183 Dec 16, 2022
Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning

Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning. Circuit Training is an open-s

Google Research 479 Dec 25, 2022
Official code for "Stereo Waterdrop Removal with Row-wise Dilated Attention (IROS2021)"

Stereo-Waterdrop-Removal-with-Row-wise-Dilated-Attention This repository includes official codes for "Stereo Waterdrop Removal with Row-wise Dilated A

29 Oct 01, 2022
MAUS: A Dataset for Mental Workload Assessment Using Wearable Sensor - Baseline system

MAUS: A Dataset for Mental Workload Assessment Using Wearable Sensor - Baseline system Getting started To start working on this assignment, you should

2 Aug 06, 2022
A PyTorch Implementation of "SINE: Scalable Incomplete Network Embedding" (ICDM 2018).

Scalable Incomplete Network Embedding ⠀⠀ A PyTorch implementation of Scalable Incomplete Network Embedding (ICDM 2018). Abstract Attributed network em

Benedek Rozemberczki 69 Sep 22, 2022
An end-to-end implementation of intent prediction with Metaflow and other cool tools

You Don't Need a Bigger Boat An end-to-end (Metaflow-based) implementation of an intent prediction flow for kids who can't MLOps good and wanna learn

Jacopo Tagliabue 614 Dec 31, 2022
Doge-Prediction - Coding Club prediction ig

Doge-Prediction Coding Club prediction ig Basically: Create an application that

1 Jan 10, 2022
The "breathing k-means" algorithm with datasets and example notebooks

The Breathing K-Means Algorithm (with examples) The Breathing K-Means is an approximation algorithm for the k-means problem that (on average) is bette

Bernd Fritzke 75 Nov 17, 2022
Making Structure-from-Motion (COLMAP) more robust to symmetries and duplicated structures

SfM disambiguation with COLMAP About Structure-from-Motion generally fails when the scene exhibits symmetries and duplicated structures. In this repos

Computer Vision and Geometry Lab 193 Dec 26, 2022
Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks.

Self Supervised Learning with Fastai Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks. Install pip install self-

Kerem Turgutlu 276 Dec 23, 2022
Awesome Monocular 3D detection

Awesome Monocular 3D detection Paper list of 3D detetction, keep updating! Contents Paper List 2022 2021 2020 2019 2018 2017 2016 KITTI Results Paper

Zhikang Zou 184 Jan 04, 2023
CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image.

CoReNet CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image. It produces coherent reconstructions, where all objec

Google Research 80 Dec 25, 2022