Original Pytorch Implementation of FLAME: Facial Landmark Heatmap Activated Multimodal Gaze Estimation

Overview

FLAME

Original Pytorch Implementation of FLAME: Facial Landmark Heatmap Activated Multimodal Gaze Estimation, accepted at the 17th IEEE Internation Conference on Advanced Video and Signal-based Surveillance, AVSS 2021, Virtual, November 16-19, 2021.

arXiv Preprint: arXiv

Dependencies used

  • python v3.6.13
  • cuda v10.2
  • numpy v1.19.2
  • pandas v1.1.3
  • opencv-python-headless v4.5.1.48 (or use equivalent opencv)
  • torch v1.8.0
  • torchvision v0.9.0
  • scipy v1.5.2
  • matplotlib v3.3.4

FLAME - Model and Results

Model Architecture for FLAME -

FLAME Architecture

Results -

Experimental Settings ColumbiaGaze EYEDIAP
FLAME mean = 4.64 deg, std = 2.86 deg mean = 4.62 deg, std = 2.93 deg
F-AO mean = 5.06 deg, std = 3.13 deg mean = 4.80 deg, std = 3.02 deg
F-AF mean = 5.88 deg, std = 3.06 deg mean = 5.30 deg, std = 3.03 deg
F-B mean = 5.93 deg, std = 3.20 deg mean = 5.32 deg, std = 3.08 deg

Project Installation

This code requires Python 3, Pytorch, Cuda and other dependencies as listed above. Open Command Prompt/Terminal and use the following commands to clone the project and install dependencies (python, pip are pre-requisites) -

$ git clone https://github.com/neelabhsinha/flame.git
$ cd flame
$ pip3 install -r requirements.txt
$ python3 main.py -h

Alternatively you can install the above dependencies in your environment as you prefer. The exact versions used in this project are listed above. To be able to do necessary data preprocessing, you would also optionally require Openface 2.0 (or any other 2D landmark extractor) and RetinaFace (or any other way to extract face crops). These are optional requirements and feel free to use any other toolkit to achieve the required objective. For more details read through the section 'Preparing the dataset'.

Project Description

The functions in the code have doctext which describe the purpose of the function and their parameters, return type.

Files in the project are described in the following table -

File Description
datasets/data.py Contains dataset class and sampler class used by the data loader in training/testing loop to generate data samples (edit this if you organize the data differently as compared to how it is mentioned in 'preparing the dataset' section).
losses/angular_loss.py Pytorch definition of 3D angular loss function used for evaluations.
losses/vector_loss.py Pytorch definition of vector difference loss function used for training.
models Contains Pytorch definition of models proposed in the paper as defined in the table below.
metadata Contains dataset metadata like split, max-min values as explained in the below sections.
utils/data_split.py Contains function to split the data into train, test and validation sets and save it at the desired place (see 'optional configurations' section below for details).
utils/helpers.py Contains function to crop eye sample randomly, used by the dataset class in datasets/data.py, and function that generates heatmap, used by get_and_save_heatmap function in utils/data_preprocess.py (all functions defined here are used by other functions and need not be used directly by the programmer).
utils/preprocess.py Contains preprocessing functions, like getting head_pose angles from rotation matrix, outermost method to extract 2D facial landmark heatmap for entire dataset, get max-min values of different modalities of a dataset, and a few helper functions (see 'optional configurations' and 'preparing the dataset' sections below for more details).
utils/train.py Contains 2 functions, one function to train the network containing training loop and related functionalities like loading a checkpoint, saving epoch results, and another method incorporating the entire forward pass pipeline which can be used for training, testing, and for any other purpose as desired (see 'training' section below for details).
utils/test.py Contains method that runs evaluations on test set of a data and saves the predictions (see 'evaluations/testing' section below).
config.py Contains configuration veriables like dataset paths, project path, path to store weights, logs, and training hyperparameters like maximum epoch, batch size. Edit this file before running the project with appropriate paths.
main.py Contains main code that drives the entire project as per arguments provided (details are explained in following sections).

Each model as described in the paper is identified with a unique key in this code which we shall address by model_key in this readme. The keys to those models along with the pretrained checkpoints (containing model weights, and other variables related to the final state) are given in the table below -

Model Name Model key (model_key) Model definition Columbiagaze Checkpoint EYEDIAP Checkpoint
FLAME mmtm-fusion models/mmtm_fusion.py Checkpoint Checkpoint
F-AO concatenated-fusion models/aggregation_only.py TBA TBA
F-AF additive-fusion models/additive_fusion.py TBA TBA
F-B baseline models/baseline.py TBA TBA

We shall explain how to use this model_key when we cover how to run the code in the below sections. The format of these checkpoints is in the form of dictionary with following schema -

{
  'epoch': epoch number, 
  'model_state_dict': model_weights, 
  'optimizer_state_dict': optimizer state,
  'scheduler_state_dict': scheduler_state,
  'loss_train': mean_training_loss, 
  'loss_cv': mean_cv_loss
}

Prepraring the dataset

Prepare a directory structure as the following and add the root in the dataset_paths dictionary in config.py.

dataset_root
│
└───images
│   │───subject01
│   │   │   1.npy
│   |   │   2.npy
│   |   │   ...
│   │
│   └───subject02
│   |   │   1.npy
│   |   │   2.npy
│   |   │   ...
│   |....
│   
└───heatmaps
│   │───subject01
│   │   │   1.npy
│   |   │   2.npy
│   |   │   ...
│   │
│   └───subject02
│   |   │   1.npy
│   |   │   2.npy
│   |   │   ...
│   |....
|
└───facial_landmarks_2d
│   │───subject01.pkl
│   |───subject02.pkl
|   |....
│   
|
└───head_pose
│   │───subject01.pkl
│   |───subject02.pkl
|   |....
│   
└───gaze_target
│   │───subject01.pkl
│   |───subject02.pkl
|   |....
│   
  • images - RGB images as numpy arrays with dimension (height, width, channels) of the complete face crop. Stored as one folder for each subject, and images of the particular subject contained inside as numpy arrays.
  • heatmaps - 2D landmark heatmaps as numpy arrays with dimension (height, width, channels) of the complete face crop. Stored as one folder for each subject, and images of the particular subject contained inside as numpy arrays.
  • facial_landmarks_2d - 2D facial landmarks in the form of numpy arrays saved as pickle (index i of a file contains data corresponding to (i+1)th image and heatmap file inside the given subject folder with the same name as that of the pickle file).
  • head_pose - Head pose angles in the form of numpy arrays of the type [pitch, yaw, roll] angle numpy arrays (index i of a file contains data corresponding to (i+1)th image and heatmap file inside the given subject folder with the same name as that of the pickle file). If not available, headpose can be used from the output of Openface 2.0.
  • gaze_angles - Gaze angles in the form of numpy arrays of the type [yaw, pitch] angle numpy arrays (index i of a file contains data corresponding to (i+1)th image and heatmap file inside the given subject folder with the same name as that of the pickle file). This is the ground truth.

Steps -

  1. Extract Face crops from RetinaFace and zero-pad them to nearest 4:5 ratio (or any other way to extract face crops).
  2. Crop them to 384 * 450 pixels. The dimension of RGB images, hence, will be 384*450*3.
  3. Run Openface 2.0 on these images (or any other way to extract landmarks in desired order as given by Openface)
  4. Collect the 2D facial landmarks from it in the above directory structure as per the given instruction above. Each element will be a 112-dimensional numpy array (for 28 2D landmarks for both eyes in the format (fl_x_0, fl_x_1,...,fl_x_55,fl_y_0,fl_y_1,...,fl_y_55), with 0-27 index for the right eye and 28-55 for the left eye. There will be same number of such elements as the number of images in corresponding images folder. So, for a subject, this will be a numpy array of dimensions (num_images, 112).
  5. Collect the images, head pose, and gaze targets in the above directory structure as per given instructions. To generate head_pose angles from rotation matrix, use get_head_pose_angles from utils/preprocess.py. For a subject, dimension of head pose will be (number of images, 3) and gaze targets will be (number of images, 2), both as numpy arrays.
  6. Add the root dataset directory to dataset_paths by dataset_name:dataset_path in config.py (Use this dataset_name everywhere in the code for all dataset name related parameters in the code).
  7. Generate heatmaps from the 2D landmarks after completing step 1-6. You can use the function get_and_save_heatmap given in utils/preprocess.py with dataset_name as parameter. Use the following command -
$ python3 main.py --get_heatmap --dataset <dataset_name>
  1. It should create heatmaps directory and save the heatmaps there, with same format as that of images, and each heatmap to be 384*480*28. Corresponding landmarks for left and the right eye will be in the same channel, and one will be cropped out during loading the data when eye crops are generated. This is done to make the heatmap less sparse and save memory during storage, while also make data loading efficient.

The dataset directory is now ready.

Notes

  • Maintain 1...n continuous numbers for images, heatmaps and save other data in pickle at corresponding 0-(n-1) indices
  • Take care of the file formats

Other Configurations required

Please do the following before running the code

  1. Please add all the dependencies in your environment which support the given version.
  2. In config.py file, change/add all the dataset paths, and other parameters as defined.

Optional Configurations

Few other metadata that are required but is already given along with this repository for our experiments are described below. You may run it on your own but it's not compulsory.

  1. Generating Split - Decide which folders will be in train, test, and val splits. Can be done using the following script (our split is available in metadata/splits directory) -
$ python3 main.py --split_data --split_nature cross-person --data <dataset_name>

Function is available at utils/data_split.py for viewing the schema of the file

  1. Getting maximum and minimum values of each input and output - Used for normalization purposes and is extracted only for the training data. For our split and data, the parameters are given in metadata/data_statistics in the form of a dictionary stored as pickle. Use the following command to extract these parameters -
$ python3 main.py --get_data_stats --dataset <dataset_name>

Function is available at utils/preprocess.py by the name get_mean_and_std

Evaluations/Testing

  1. Set up the project using above steps
  2. Download the weights from the specified locations
  3. Execute the following command -
$ python3 main.py --test <model_key> --dataset <dataset_name of training dataset> --test_data <dataset_name of testing dataset> --load_checkpoint <complete path of the checkpoint on which model is to be tested>

A csv file will be stored at the test_path location as specified in config.py by the name '<train_dataset_name>_<test_dataset_name>_<model_key>.csv' having the following schema for all provided images in order -

index, yaw_p, pitch_p, yaw_t, pitch_t, loss_3d, error_y, error_p

Apart from this, a log file is maintained by the name testing_<dataset_name>_<model_name>_cross-person.log in the loggers_loc directory.

Note -

  • To generate predictions on the customized pipeline, you can create an input pipeline on your own and use the function forward_propagation inside utils/train.py and provide the inputs to the same. It will return you the values in order of a tuple ((predicted_yaw, predicted_pitch),(true_yaw, true_pitch), error) of type (tensor, tensor, float).

Training

  1. Set up the project using above steps
  2. Execute the following command -
$ python3 main.py --train <model_key> --dataset <dataset_name>

To change training hyperparameters, change variables in config.py file

Training from a checkpoint -

$ python3 main.py --train <model_key< --dataset <dataset_name> --load_checkpoint <complete path of checkpoint file>

A log file is maintained by the name training_<dataset_name>_<model_name>_cross-person.log in the loggers_loc directory logging details of losses after each epoch is completed.

Citation

If you found our work helpful in your use case, please cite the following paper -

Owner
Neelabh Sinha
Student, BITS, Pilani
Neelabh Sinha
Jiminy Cricket Environment (NeurIPS 2021)

Jiminy Cricket This is the repository for "What Would Jiminy Cricket Do? Towards Agents That Behave Morally" by Dan Hendrycks*, Mantas Mazeika*, Andy

Dan Hendrycks 15 Aug 29, 2022
Light-Head R-CNN

Light-head R-CNN Introduction We release code for Light-Head R-CNN. This is my best practice for my research. This repo is organized as follows: light

jemmy li 835 Dec 06, 2022
NER for Indian languages

CL-NERIL: A Cross-Lingual Model for NER in Indian Languages Code for the paper - https://arxiv.org/abs/2111.11815 Setup Setup a virtual environment Th

Akshara P 0 Nov 24, 2021
a spacial-temporal pattern detection system for home automation

Argos a spacial-temporal pattern detection system for home automation. Based on OpenCV and Tensorflow, can run on raspberry pi and notify HomeAssistan

Angad Singh 133 Jan 05, 2023
Monitora la qualità della ricezione dei segnali radio nelle province siciliane.

FMap-server Monitora la qualità della ricezione dei segnali radio nelle province siciliane. Conversion data Frequency - StationName maps are stored in

Triglie 5 May 24, 2021
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

Microsoft 8.4k Jan 01, 2023
Self-supervised Deep LiDAR Odometry for Robotic Applications

DeLORA: Self-supervised Deep LiDAR Odometry for Robotic Applications Overview Paper: link Video: link ICRA Presentation: link This is the correspondin

Robotic Systems Lab - Legged Robotics at ETH Zürich 181 Dec 29, 2022
This code is an implementation for Singing TTS.

MLP Singer This code is an implementation for Singing TTS. The algorithm is based on the following papers: Tae, J., Kim, H., & Lee, Y. (2021). MLP Sin

Heejo You 22 Dec 23, 2022
InsightFace: 2D and 3D Face Analysis Project on MXNet and PyTorch

InsightFace: 2D and 3D Face Analysis Project on MXNet and PyTorch

Deep Insight 13.2k Jan 06, 2023
AdamW optimizer for bfloat16 models in pytorch.

Image source AdamW optimizer for bfloat16 models in pytorch. Bfloat16 is currently an optimal tradeoff between range and relative error for deep netwo

Alex Rogozhnikov 8 Nov 20, 2022
Python wrapper of LSODA (solving ODEs) which can be called from within numba functions.

numbalsoda numbalsoda is a python wrapper to the LSODA method in ODEPACK, which is for solving ordinary differential equation initial value problems.

Nick Wogan 52 Jan 09, 2023
Official Pytorch Implementation of: "ImageNet-21K Pretraining for the Masses"(2021) paper

ImageNet-21K Pretraining for the Masses Paper | Pretrained models Official PyTorch Implementation Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, Lihi Zelni

574 Jan 02, 2023
Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch .

PyTorch-High-Res-Stereo-Depth-Estimation Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch. Stereo dep

Ibai Gorordo 26 Nov 24, 2022
Code in PyTorch for the convex combination linear IAF and the Householder Flow, J.M. Tomczak & M. Welling

VAE with Volume-Preserving Flows This is a PyTorch implementation of two volume-preserving flows as described in the following papers: Tomczak, J. M.,

Jakub Tomczak 87 Dec 26, 2022
NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch

NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch, train it, collect statistics, and share it among the members of the community. It is not just a visual

HTM Community 93 Sep 30, 2022
Laplace Redux -- Effortless Bayesian Deep Learning

Laplace Redux - Effortless Bayesian Deep Learning This repository contains the code to run the experiments for the paper Laplace Redux - Effortless Ba

Runa Eschenhagen 28 Dec 07, 2022
Official PyTorch implementation of BlobGAN: Spatially Disentangled Scene Representations

BlobGAN: Spatially Disentangled Scene Representations Official PyTorch Implementation Paper | Project Page | Video | Interactive Demo BlobGAN.mp4 This

148 Dec 29, 2022
Playing around with FastAPI and streamlit to create a YoloV5 object detector

FastAPI-Streamlit-based-YoloV5-detector Playing around with FastAPI and streamlit to create a YoloV5 object detector It turns out that a User Interfac

2 Jan 20, 2022
YOLTv5 rapidly detects objects in arbitrarily large aerial or satellite images that far exceed the ~600×600 pixel size typically ingested by deep learning object detection frameworks

YOLTv5 rapidly detects objects in arbitrarily large aerial or satellite images that far exceed the ~600×600 pixel size typically ingested by deep learning object detection frameworks.

Adam Van Etten 145 Jan 01, 2023
TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition

TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition Xue, Wenyuan, et al. "TGRNet: A Table Graph Reconstruction Network for Ta

Wenyuan 68 Jan 04, 2023