StarGAN - Official PyTorch Implementation (CVPR 2018)

Overview

StarGAN - Official PyTorch Implementation

***** New: StarGAN v2 is available at https://github.com/clovaai/stargan-v2 *****

This repository provides the official PyTorch implementation of the following paper:

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation
Yunjey Choi1,2, Minje Choi1,2, Munyoung Kim2,3, Jung-Woo Ha2, Sung Kim2,4, Jaegul Choo1,2    
1Korea University, 2Clova AI Research, NAVER Corp.
3The College of New Jersey, 4Hong Kong University of Science and Technology
https://arxiv.org/abs/1711.09020

Abstract: Recent studies have shown remarkable success in image-to-image translation for two domains. However, existing approaches have limited scalability and robustness in handling more than two domains, since different models should be built independently for every pair of image domains. To address this limitation, we propose StarGAN, a novel and scalable approach that can perform image-to-image translations for multiple domains using only a single model. Such a unified model architecture of StarGAN allows simultaneous training of multiple datasets with different domains within a single network. This leads to StarGAN's superior quality of translated images compared to existing models as well as the novel capability of flexibly translating an input image to any desired target domain. We empirically demonstrate the effectiveness of our approach on a facial attribute transfer and a facial expression synthesis tasks.

Dependencies

Downloading datasets

To download the CelebA dataset:

git clone https://github.com/yunjey/StarGAN.git
cd StarGAN/
bash download.sh celeba

To download the RaFD dataset, you must request access to the dataset from the Radboud Faces Database website. Then, you need to create a folder structure as described here.

Training networks

To train StarGAN on CelebA, run the training script below. See here for a list of selectable attributes in the CelebA dataset. If you change the selected_attrs argument, you should also change the c_dim argument accordingly.

# Train StarGAN using the CelebA dataset
python main.py --mode train --dataset CelebA --image_size 128 --c_dim 5 \
               --sample_dir stargan_celeba/samples --log_dir stargan_celeba/logs \
               --model_save_dir stargan_celeba/models --result_dir stargan_celeba/results \
               --selected_attrs Black_Hair Blond_Hair Brown_Hair Male Young

# Test StarGAN using the CelebA dataset
python main.py --mode test --dataset CelebA --image_size 128 --c_dim 5 \
               --sample_dir stargan_celeba/samples --log_dir stargan_celeba/logs \
               --model_save_dir stargan_celeba/models --result_dir stargan_celeba/results \
               --selected_attrs Black_Hair Blond_Hair Brown_Hair Male Young

To train StarGAN on RaFD:

# Train StarGAN using the RaFD dataset
python main.py --mode train --dataset RaFD --image_size 128 \
               --c_dim 8 --rafd_image_dir data/RaFD/train \
               --sample_dir stargan_rafd/samples --log_dir stargan_rafd/logs \
               --model_save_dir stargan_rafd/models --result_dir stargan_rafd/results

# Test StarGAN using the RaFD dataset
python main.py --mode test --dataset RaFD --image_size 128 \
               --c_dim 8 --rafd_image_dir data/RaFD/test \
               --sample_dir stargan_rafd/samples --log_dir stargan_rafd/logs \
               --model_save_dir stargan_rafd/models --result_dir stargan_rafd/results

To train StarGAN on both CelebA and RafD:

# Train StarGAN using both CelebA and RaFD datasets
python main.py --mode=train --dataset Both --image_size 256 --c_dim 5 --c2_dim 8 \
               --sample_dir stargan_both/samples --log_dir stargan_both/logs \
               --model_save_dir stargan_both/models --result_dir stargan_both/results

# Test StarGAN using both CelebA and RaFD datasets
python main.py --mode test --dataset Both --image_size 256 --c_dim 5 --c2_dim 8 \
               --sample_dir stargan_both/samples --log_dir stargan_both/logs \
               --model_save_dir stargan_both/models --result_dir stargan_both/results

To train StarGAN on your own dataset, create a folder structure in the same format as RaFD and run the command:

# Train StarGAN on custom datasets
python main.py --mode train --dataset RaFD --rafd_crop_size CROP_SIZE --image_size IMG_SIZE \
               --c_dim LABEL_DIM --rafd_image_dir TRAIN_IMG_DIR \
               --sample_dir stargan_custom/samples --log_dir stargan_custom/logs \
               --model_save_dir stargan_custom/models --result_dir stargan_custom/results

# Test StarGAN on custom datasets
python main.py --mode test --dataset RaFD --rafd_crop_size CROP_SIZE --image_size IMG_SIZE \
               --c_dim LABEL_DIM --rafd_image_dir TEST_IMG_DIR \
               --sample_dir stargan_custom/samples --log_dir stargan_custom/logs \
               --model_save_dir stargan_custom/models --result_dir stargan_custom/results

Using pre-trained networks

To download a pre-trained model checkpoint, run the script below. The pre-trained model checkpoint will be downloaded and saved into ./stargan_celeba_128/models directory.

$ bash download.sh pretrained-celeba-128x128

To translate images using the pre-trained model, run the evaluation script below. The translated images will be saved into ./stargan_celeba_128/results directory.

$ python main.py --mode test --dataset CelebA --image_size 128 --c_dim 5 \
                 --selected_attrs Black_Hair Blond_Hair Brown_Hair Male Young \
                 --model_save_dir='stargan_celeba_128/models' \
                 --result_dir='stargan_celeba_128/results'

Citation

If you find this work useful for your research, please cite our paper:

@inproceedings{choi2018stargan,
author={Yunjey Choi and Minje Choi and Munyoung Kim and Jung-Woo Ha and Sunghun Kim and Jaegul Choo},
title={StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
year={2018}
}

Acknowledgements

This work was mainly done while the first author did a research internship at Clova AI Research, NAVER. We thank all the researchers at NAVER, especially Donghyun Kwak, for insightful discussions.

Owner
Yunjey Choi
Yunjey Choi
A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen.

Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+

Giovanni Petrantoni 425 Dec 22, 2022
A study project using the AA-RMVSNet to reconstruct buildings from multiple images

3d-building-reconstruction This is part of a study project using the AA-RMVSNet to reconstruct buildings from multiple images. Introduction It is exci

17 Oct 17, 2022
Deep Learning Algorithms for Hedging with Frictions

Deep Learning Algorithms for Hedging with Frictions This repository contains the Forward-Backward Stochastic Differential Equation (FBSDE) solver and

Xiaofei Shi 3 Dec 22, 2022
PiRank: Learning to Rank via Differentiable Sorting

PiRank: Learning to Rank via Differentiable Sorting This repository provides a reference implementation for learning PiRank-based models as described

54 Dec 17, 2022
Experiments with differentiable stacks and queues in PyTorch

Please use stacknn-core instead! StackNN This project implements differentiable stacks and queues in PyTorch. The data structures are implemented in s

Will Merrill 141 Oct 06, 2022
Unofficial implementation of Proxy Anchor Loss for Deep Metric Learning

Proxy Anchor Loss for Deep Metric Learning Unofficial pytorch, tensorflow and mxnet implementations of Proxy Anchor Loss for Deep Metric Learning. Not

Geonmo Gu 3 Jun 09, 2021
The source codes for ACL 2021 paper 'BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data'

BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data This repository provides the implementation details for

124 Dec 27, 2022
Official Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER 🦌 🦒 Official Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEE

33 Dec 23, 2022
This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation.

ERFNet This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation. NEW!! New PyTorch

Edu 104 Jan 05, 2023
Makes patches from huge resolution .svs slide files using openslide

openslide_patcher Makes patches from huge resolution .svs slide files using openslide Example collage I made from outputs:

2 Dec 23, 2021
Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learning.

This is the Vowpal Wabbit fast online learning code. Why Vowpal Wabbit? Vowpal Wabbit is a machine learning system which pushes the frontier of machin

Vowpal Wabbit 8.1k Jan 06, 2023
Federated_learning codes used for the the paper "Evaluation of Federated Learning Aggregation Algorithms" and "A Federated Learning Aggregation Algorithm for Pervasive Computing: Evaluation and Comparison"

Federated Distance (FedDist) This is the code accompanying the Percom2021 paper "A Federated Learning Aggregation Algorithm for Pervasive Computing: E

GETALP 8 Jan 03, 2023
Few-shot Learning of GPT-3

Few-shot Learning With Language Models This is a codebase to perform few-shot "in-context" learning using language models similar to the GPT-3 paper.

Tony Z. Zhao 224 Dec 28, 2022
Tutorial repo for an end-to-end Data Science project

End-to-end Data Science project This is the repo with the notebooks, code, and additional material used in the ITI's workshop. The goal of the session

Deena Gergis 127 Dec 30, 2022
Identify the emotion of multiple speakers in an Audio Segment

MevonAI - Speech Emotion Recognition Identify the emotion of multiple speakers in a Audio Segment Report Bug · Request Feature Try the Demo Here Table

Suyash More 110 Dec 03, 2022
Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations. [2021]

Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations This repo contains the Pytorch implementation of our paper: Revisit

Wouter Van Gansbeke 80 Nov 20, 2022
A 3D Dense mapping backend library of SLAM based on taichi-Lang designed for the aerial swarm.

TaichiSLAM This project is a 3D Dense mapping backend library of SLAM based Taichi-Lang, designed for the aerial swarm. Intro Taichi is an efficient d

XuHao 230 Dec 19, 2022
Modeling Temporal Concept Receptive Field Dynamically for Untrimmed Video Analysis

Modeling Temporal Concept Receptive Field Dynamically for Untrimmed Video Analysis This is a PyTorch implementation of the model described in our pape

qzhb 6 Jul 08, 2021
Open source code for the paper of Neural Sparse Voxel Fields.

Neural Sparse Voxel Fields (NSVF) Project Page | Video | Paper | Data Photo-realistic free-viewpoint rendering of real-world scenes using classical co

Meta Research 647 Dec 27, 2022
Simple Pixelbot for Diablo 2 Resurrected written in python and opencv.

Simple Pixelbot for Diablo 2 Resurrected written in python and opencv. Obviously only use it in offline mode as it is against the TOS of Blizzard to use it in online mode!

468 Jan 03, 2023