StarGAN - Official PyTorch Implementation (CVPR 2018)

Overview

StarGAN - Official PyTorch Implementation

***** New: StarGAN v2 is available at https://github.com/clovaai/stargan-v2 *****

This repository provides the official PyTorch implementation of the following paper:

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation
Yunjey Choi1,2, Minje Choi1,2, Munyoung Kim2,3, Jung-Woo Ha2, Sung Kim2,4, Jaegul Choo1,2    
1Korea University, 2Clova AI Research, NAVER Corp.
3The College of New Jersey, 4Hong Kong University of Science and Technology
https://arxiv.org/abs/1711.09020

Abstract: Recent studies have shown remarkable success in image-to-image translation for two domains. However, existing approaches have limited scalability and robustness in handling more than two domains, since different models should be built independently for every pair of image domains. To address this limitation, we propose StarGAN, a novel and scalable approach that can perform image-to-image translations for multiple domains using only a single model. Such a unified model architecture of StarGAN allows simultaneous training of multiple datasets with different domains within a single network. This leads to StarGAN's superior quality of translated images compared to existing models as well as the novel capability of flexibly translating an input image to any desired target domain. We empirically demonstrate the effectiveness of our approach on a facial attribute transfer and a facial expression synthesis tasks.

Dependencies

Downloading datasets

To download the CelebA dataset:

git clone https://github.com/yunjey/StarGAN.git
cd StarGAN/
bash download.sh celeba

To download the RaFD dataset, you must request access to the dataset from the Radboud Faces Database website. Then, you need to create a folder structure as described here.

Training networks

To train StarGAN on CelebA, run the training script below. See here for a list of selectable attributes in the CelebA dataset. If you change the selected_attrs argument, you should also change the c_dim argument accordingly.

# Train StarGAN using the CelebA dataset
python main.py --mode train --dataset CelebA --image_size 128 --c_dim 5 \
               --sample_dir stargan_celeba/samples --log_dir stargan_celeba/logs \
               --model_save_dir stargan_celeba/models --result_dir stargan_celeba/results \
               --selected_attrs Black_Hair Blond_Hair Brown_Hair Male Young

# Test StarGAN using the CelebA dataset
python main.py --mode test --dataset CelebA --image_size 128 --c_dim 5 \
               --sample_dir stargan_celeba/samples --log_dir stargan_celeba/logs \
               --model_save_dir stargan_celeba/models --result_dir stargan_celeba/results \
               --selected_attrs Black_Hair Blond_Hair Brown_Hair Male Young

To train StarGAN on RaFD:

# Train StarGAN using the RaFD dataset
python main.py --mode train --dataset RaFD --image_size 128 \
               --c_dim 8 --rafd_image_dir data/RaFD/train \
               --sample_dir stargan_rafd/samples --log_dir stargan_rafd/logs \
               --model_save_dir stargan_rafd/models --result_dir stargan_rafd/results

# Test StarGAN using the RaFD dataset
python main.py --mode test --dataset RaFD --image_size 128 \
               --c_dim 8 --rafd_image_dir data/RaFD/test \
               --sample_dir stargan_rafd/samples --log_dir stargan_rafd/logs \
               --model_save_dir stargan_rafd/models --result_dir stargan_rafd/results

To train StarGAN on both CelebA and RafD:

# Train StarGAN using both CelebA and RaFD datasets
python main.py --mode=train --dataset Both --image_size 256 --c_dim 5 --c2_dim 8 \
               --sample_dir stargan_both/samples --log_dir stargan_both/logs \
               --model_save_dir stargan_both/models --result_dir stargan_both/results

# Test StarGAN using both CelebA and RaFD datasets
python main.py --mode test --dataset Both --image_size 256 --c_dim 5 --c2_dim 8 \
               --sample_dir stargan_both/samples --log_dir stargan_both/logs \
               --model_save_dir stargan_both/models --result_dir stargan_both/results

To train StarGAN on your own dataset, create a folder structure in the same format as RaFD and run the command:

# Train StarGAN on custom datasets
python main.py --mode train --dataset RaFD --rafd_crop_size CROP_SIZE --image_size IMG_SIZE \
               --c_dim LABEL_DIM --rafd_image_dir TRAIN_IMG_DIR \
               --sample_dir stargan_custom/samples --log_dir stargan_custom/logs \
               --model_save_dir stargan_custom/models --result_dir stargan_custom/results

# Test StarGAN on custom datasets
python main.py --mode test --dataset RaFD --rafd_crop_size CROP_SIZE --image_size IMG_SIZE \
               --c_dim LABEL_DIM --rafd_image_dir TEST_IMG_DIR \
               --sample_dir stargan_custom/samples --log_dir stargan_custom/logs \
               --model_save_dir stargan_custom/models --result_dir stargan_custom/results

Using pre-trained networks

To download a pre-trained model checkpoint, run the script below. The pre-trained model checkpoint will be downloaded and saved into ./stargan_celeba_128/models directory.

$ bash download.sh pretrained-celeba-128x128

To translate images using the pre-trained model, run the evaluation script below. The translated images will be saved into ./stargan_celeba_128/results directory.

$ python main.py --mode test --dataset CelebA --image_size 128 --c_dim 5 \
                 --selected_attrs Black_Hair Blond_Hair Brown_Hair Male Young \
                 --model_save_dir='stargan_celeba_128/models' \
                 --result_dir='stargan_celeba_128/results'

Citation

If you find this work useful for your research, please cite our paper:

@inproceedings{choi2018stargan,
author={Yunjey Choi and Minje Choi and Munyoung Kim and Jung-Woo Ha and Sunghun Kim and Jaegul Choo},
title={StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
year={2018}
}

Acknowledgements

This work was mainly done while the first author did a research internship at Clova AI Research, NAVER. We thank all the researchers at NAVER, especially Donghyun Kwak, for insightful discussions.

Owner
Yunjey Choi
Yunjey Choi
kullanışlı ve işinizi kolaylaştıracak bir araç

Hey merhaba! işte çok sorulan sorularının cevabı ve sorunlarının çözümü; Soru= İçinde var denilen birçok şeyi göremiyorum bunun sebebi nedir? Cevap= B

Sexettin 16 Dec 17, 2022
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022
Repository for benchmarking graph neural networks

Benchmarking Graph Neural Networks Updates Nov 2, 2020 Project based on DGL 0.4.2. See the relevant dependencies defined in the environment yml files

NTU Graph Deep Learning Lab 2k Jan 03, 2023
Rate-limit-semaphore - Semaphore implementation with rate limit restriction for async-style (any core)

Rate Limit Semaphore Rate limit semaphore for async-style (any core) There are t

Yan Kurbatov 4 Jun 21, 2022
Dashboard for the COVID19 spread

COVID-19 Data Explorer App A streamlit Dashboard for the COVID-19 spread. The app is live at: [https://covid19.cwerner.ai]. New data is queried from G

Christian Werner 22 Sep 29, 2022
Code for "Hierarchical Skills for Efficient Exploration" HSD-3 Algorithm and Baselines

Hierarchical Skills for Efficient Exploration This is the source code release for the paper Hierarchical Skills for Efficient Exploration. It contains

Facebook Research 38 Dec 06, 2022
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr

Christoph Reich 23 Sep 21, 2022
wlad 2 Dec 19, 2022
ISBI 2022: Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image.

Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image Introduction This repository contains the PyTorch implem

25 Nov 09, 2022
AEI: Actors-Environment Interaction with Adaptive Attention for Temporal Action Proposals Generation

AEI: Actors-Environment Interaction with Adaptive Attention for Temporal Action Proposals Generation A pytorch-version implementation codes of paper:

11 Dec 13, 2022
A Closer Look at Reference Learning for Fourier Phase Retrieval

A Closer Look at Reference Learning for Fourier Phase Retrieval This repository contains code for our NeurIPS 2021 Workshop on Deep Learning and Inver

Tobias Uelwer 1 Oct 28, 2021
graph-theoretic framework for robust pairwise data association

CLIPPER: A Graph-Theoretic Framework for Robust Data Association Data association is a fundamental problem in robotics and autonomy. CLIPPER provides

MIT Aerospace Controls Laboratory 118 Dec 28, 2022
SpecAugmentPyTorch - A Pytorch (support batch and channel) implementation of GoogleBrain's SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition

SpecAugment An implementation of SpecAugment for Pytorch How to use Install pytorch, version=1.9.0 (new feature (torch.Tensor.take_along_dim) is used

IMLHF 3 Oct 11, 2022
A user-friendly research and development tool built to standardize RL competency assessment for custom agents and environments.

Built with ❤️ by Sam Showalter Contents Overview Installation Dependencies Usage Scripts Standard Execution Environment Development Environment Benchm

SRI-AIC 1 Nov 18, 2021
Accommodating supervised learning algorithms for the historical prices of the world's favorite cryptocurrency and boosting it through LightGBM.

Accommodating supervised learning algorithms for the historical prices of the world's favorite cryptocurrency and boosting it through LightGBM.

1 Nov 27, 2021
Pre-trained NFNets with 99% of the accuracy of the official paper

NFNet Pytorch Implementation This repo contains pretrained NFNet models F0-F6 with high ImageNet accuracy from the paper High-Performance Large-Scale

Benjamin Schmidt 133 Dec 09, 2022
Annotate with anyone, anywhere.

h h is the web app that serves most of the https://hypothes.is/ website, including the web annotations API at https://hypothes.is/api/. The Hypothesis

Hypothesis 2.6k Jan 08, 2023
🇰🇷 Text to Image in Korean

KoDALLE Utilizing pretrained language model’s token embedding layer and position embedding layer as DALLE’s text encoder. Background Training DALLE mo

HappyFace 74 Sep 22, 2022
FS2KToolbox FS2K Dataset Towards the translation between Face

FS2KToolbox FS2K Dataset Towards the translation between Face -- Sketch. Download (photo+sketch+annotation): Google-drive, Baidu-disk, pw: FS2K. For

Deng-Ping Fan 5 Jan 03, 2023
Chinese Advertisement Board Identification(Pytorch)

Chinese-Advertisement-Board-Identification. We use YoloV5 to extract the ROI of the location of the chinese word. Next, we sort the bounding box and recognize every chinese words which we extracted.

Li-Wei Hsiao 12 Jul 21, 2022