[ICCV 2021 Oral] PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers

Overview

PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers

PWC

Created by Xumin Yu*, Yongming Rao*, Ziyi Wang, Zuyan Liu, Jiwen Lu, Jie Zhou

This repository contains PyTorch implementation for PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers (ICCV 2021 Oral Presentation) [arXiv].

PoinTr is a transformer-based model for point cloud completion. By representing the point cloud as a set of unordered groups of points with position embeddings, we convert the point cloud to a sequence of point proxies and employ a transformer encoder-decoder architecture for generation. We also propose two more challenging benchmarks ShapeNet-55/34 with more diverse incomplete point clouds that can better reflect the real-world scenarios to promote future research.

intro

Pretrained Models

We provide pretrained PoinTr models:

dataset url
ShapeNet-55 [Tsinghua Cloud] / [Google Drive] / [BaiDuYun] (code:erdh)
ShapeNet-34 [Tsinghua Cloud] / [Google Drive] / [BaiDuYun] (code:atbb )
PCN [Tsinghua Cloud] / [Google Drive] / [BaiDuYun] (code:9g79)
KITTI coming soon

Usage

Requirements

  • PyTorch >= 1.7.0
  • python >= 3.7
  • CUDA >= 9.0
  • GCC >= 4.9
  • torchvision
  • timm
  • open3d
  • tensorboardX
pip install -r requirements.txt

Building Pytorch Extensions for Chamfer Distance, PointNet++ and kNN

NOTE: PyTorch >= 1.7 and GCC >= 4.9 are required.

# Chamfer Distance
bash install.sh
# PointNet++
pip install "git+git://github.com/erikwijmans/Pointnet2_PyTorch.git#egg=pointnet2_ops&subdirectory=pointnet2_ops_lib"
# GPU kNN
pip install --upgrade https://github.com/unlimblue/KNN_CUDA/releases/download/0.2/KNN_CUDA-0.2-py3-none-any.whl

Dataset

The details of our new ShapeNet-55/34 datasets and other existing datasets can be found in DATASET.md.

Evaluation

To evaluate a pre-trained PoinTr model on the Three Dataset with single GPU, run:

bash ./scripts/test.sh <GPU_IDS> --ckpts <path> --config <config> --exp_name <name> [--mode <easy/median/hard>]

Some examples:

Test the PoinTr pretrained model on the PCN benchmark:

bash ./scripts/test.sh 0 --ckpts ./pretrained/PoinTr_PCN.pth --config ./cfgs/PCN_models/PoinTr.yaml --exp_name example

Test the PoinTr pretrained model on ShapeNet55 benchmark (easy mode):

bash ./scripts/test.sh 0 --ckpts ./pretrained/PoinTr_ShapeNet55.pth --config ./cfgs/ShapeNet55_models/PoinTr.yaml --mode easy --exp_name example

Test the PoinTr pretrained model on the KITTI benchmark:

bash ./scripts/test.sh 0 --ckpts ./pretrained/PoinTr_KITTI.pth --config ./cfgs/KITTI_models/PoinTr.yaml --exp_name example

Training

To train a point cloud completion model from scratch, run:

# Use DistributedDataParallel (DDP)
bash ./scripts/dist_train.sh <NUM_GPU> <port> --config <config> --exp_name <name> [--resume] [--start_ckpts <path>] [--val_freq <int>]
# or just use DataParallel (DP)
bash ./scripts/train.sh <GPUIDS> --config <config> --exp_name <name> [--resume] [--start_ckpts <path>] [--val_freq <int>]

Some examples:

Train a PoinTr model on PCN benchmark with 2 gpus:

CUDA_VISIBLE_DEVICES=0,1 bash ./scripts/dist_train.sh 2 13232 --config ./cfgs/PCN_models/PoinTr.yaml --exp_name example

Resume a checkpoint:

CUDA_VISIBLE_DEVICES=0,1 bash ./scripts/dist_train.sh 2 13232 --config ./cfgs/PCN_models/PoinTr.yaml --exp_name example --resume

Finetune a PoinTr on PCNCars

CUDA_VISIBLE_DEVICES=0,1 bash ./scripts/dist_train.sh 2 13232 --config ./cfgs/KITTI_models/PoinTr.yaml --exp_name example --start_ckpts ./weight.pth

Train a PoinTr model with a single GPU:

bash ./scripts/train.sh 0 --config ./cfgs/KITTI_models/PoinTr.yaml --exp_name example

We also provide the Pytorch implementation of several baseline models including GRNet, PCN, TopNet and FoldingNet. For example, to train a GRNet model on ShapeNet-55, run:

CUDA_VISIBLE_DEVICES=0,1 bash ./scripts/dist_train.sh 2 13232 --config ./cfgs/ShapeNet55_models/GRNet.yaml --exp_name example

Completion Results on ShapeNet55 and KITTI-Cars

results

License

MIT License

Acknowledgements

Our code is inspired by GRNet and mmdetection3d.

Citation

If you find our work useful in your research, please consider citing:

@inproceedings{yu2021pointr,
  title={PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers},
  author={Yu, Xumin, Rao, Yongming and Wang, Ziyi and Liu, Zuyan, and Lu, Jiwen and Zhou, Jie},
  booktitle={ICCV},
  year={2021}
}
Owner
Xumin Yu
Xumin Yu
Small-bets - Ergodic Experiment With Python

Ergodic Experiment Based on this video. Run this experiment with this command: p

Michael Brant 3 Jan 11, 2022
This repository provides the official code for GeNER (an automated dataset Generation framework for NER).

GeNER This repository provides the official code for GeNER (an automated dataset Generation framework for NER). Overview of GeNER GeNER allows you to

DMIS Laboratory - Korea University 50 Nov 30, 2022
Pytorch implementation of "ARM: Any-Time Super-Resolution Method"

ARM-Net Dependencies Python 3.6 Pytorch 1.7 Results Train Data preprocessing cd data_scripts python extract_subimages_test.py python data_augmentation

Bohong Chen 55 Nov 24, 2022
Exponential Graph is Provably Efficient for Decentralized Deep Training

Exponential Graph is Provably Efficient for Decentralized Deep Training This code repository is for the paper Exponential Graph is Provably Efficient

3 Apr 20, 2022
PyTorch implementation of residual gated graph ConvNets, ICLR’18

Residual Gated Graph ConvNets April 24, 2018 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbress

Xavier Bresson 112 Aug 10, 2022
Deep Learning for humans

Keras: Deep Learning for Python Under Construction In the near future, this repository will be used once again for developing the Keras codebase. For

Keras 57k Jan 09, 2023
RoMa: A lightweight library to deal with 3D rotations in PyTorch.

RoMa: A lightweight library to deal with 3D rotations in PyTorch. RoMa (which stands for Rotation Manipulation) provides differentiable mappings betwe

NAVER 90 Dec 27, 2022
Generative Art Using Neural Visual Grammars and Dual Encoders

Generative Art Using Neural Visual Grammars and Dual Encoders Arnheim 1 The original algorithm from the paper Generative Art Using Neural Visual Gramm

DeepMind 231 Jan 05, 2023
A fast poisson image editing implementation that can utilize multi-core CPU or GPU to handle a high-resolution image input.

Poisson Image Editing - A Parallel Implementation Jiayi Weng (jiayiwen), Zixu Chen (zixuc) Poisson Image Editing is a technique that can fuse two imag

Jiayi Weng 110 Dec 27, 2022
Official code repository for "Exploring Neural Models for Query-Focused Summarization"

Query-Focused Summarization Official code repository for "Exploring Neural Models for Query-Focused Summarization" This is a work in progress. Expect

Salesforce 29 Dec 18, 2022
PyTorch-Geometric Implementation of MarkovGNN: Graph Neural Networks on Markov Diffusion

MarkovGNN This is the official PyTorch-Geometric implementation of MarkovGNN paper under the title "MarkovGNN: Graph Neural Networks on Markov Diffusi

HipGraph: High-Performance Graph Analytics and Learning 6 Sep 23, 2022
[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation

[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation

Xiefan Guo 122 Dec 11, 2022
Code of the lileonardo team for the 2021 Emotion and Theme Recognition in Music task of MediaEval 2021

Emotion and Theme Recognition in Music The repository contains code for the submission of the lileonardo team to the 2021 Emotion and Theme Recognitio

Vincent Bour 8 Aug 02, 2022
YOLOv5 in PyTorch > ONNX > CoreML > TFLite

This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices evolved over thousands of hours of training and e

Ultralytics 34.1k Dec 31, 2022
Implementation for our AAAI2021 paper (Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction).

SSAN Introduction This is the pytorch implementation of the SSAN model (see our AAAI2021 paper: Entity Structure Within and Throughout: Modeling Menti

benfeng 69 Nov 15, 2022
Differentiable simulation for system identification and visuomotor control

gradsim gradSim: Differentiable simulation for system identification and visuomotor control gradSim is a unified differentiable rendering and multiphy

105 Dec 18, 2022
Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression

Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression We provide the code used in our paper "How Good are Low-Rank Approximation

Aristeidis (Ares) Panos 0 Dec 13, 2021
exponential adaptive pooling for PyTorch

AdaPool: Exponential Adaptive Pooling for Information-Retaining Downsampling Abstract Pooling layers are essential building blocks of Convolutional Ne

Alexandros Stergiou 55 Jan 04, 2023
The first dataset on shadow generation for the foreground object in real-world scenes.

Object-Shadow-Generation-Dataset-DESOBA Object Shadow Generation is to deal with the shadow inconsistency between the foreground object and the backgr

BCMI 105 Dec 30, 2022
code for Image Manipulation Detection by Multi-View Multi-Scale Supervision

MVSS-Net Code and models for ICCV 2021 paper: Image Manipulation Detection by Multi-View Multi-Scale Supervision Update 22.02.17, Pretrained model for

dong_chengbo 131 Dec 30, 2022