Few-Shot-Intent-Detection includes popular challenging intent detection datasets with/without OOS queries and state-of-the-art baselines and results.

Overview

Few-Shot-Intent-Detection

Few-Shot-Intent-Detection is a repository designed for few-shot intent detection with/without Out-of-Scope (OOS) intents. It includes popular challenging intent detection datasets and baselines. For more details of the new released OOS datasets, please check our paper.

Intent detection datasets

We process data based on previous published resources, all the data are in the same format as DNNC.

Dataset Description #Train #Valid #Test Processed Data Link
BANKING77 one banking domain with 77 intents 8622 1540 3080 Link
CLINC150 10 domains and 150 intents 15000 3000 4500 Link
HWU64 personal assistant with 64 intents and several domains 8954 1076 1076 Link
SNIPS snips voice platform with 7 intents 13084 700 700 Link
ATIS airline travel information system 4478 500 893 Link

Intent detection datasets with OOS queries

What is OOS queires:

OOD-OOS: i.e., out-of-domain OOS. General out-of-scope queries which are not supported by the dialog systems, also called out-of-domain OOS. For instance, requesting an online NBA/TV show service in a banking system.

ID-OOS: i.e., in-domain OOS. Out-of-scope queries which are more related to the in-scope intents, which makes the intent detection task more challenging. For instance, requesting a banking service that is not supported by the banking system.

Dataset Description #Train #Valid #Test #OOD-OOS-Train #OOD-OOS-Valid #OOD-OOS-Test #ID-OOS-Train #ID-OOS-Valid #ID-OOS-Test Processed Data Link
CLINC150 A dataset with general OOS-OOS queries 15000 3000 4500 100 100 1000 - - - Link
CLINC-Single-Domain-OOS Two domains with both general OOS-OOS queries and ID-OOS queries 500 500 500 - 200 1000 - 400 350 Link
BANKING77-OOS One banking domain with both general OOS-OOS queries and ID-OOS queries 5905 1506 2000 - 200 1000 2062 530 1080 Link

Data structure:

Datasets/
├── BANKING77
│   ├── train
│   ├── train_10
│   ├── train_5
│   ├── valid
│   └── test
├── CLINC150
│   ├── train
│   ├── train_10
│   ├── train_5
│   ├── valid
│   ├── test
│   ├── oos
│       ├──train
│       ├──valid
│       └──test
├── HWU64
│   ├── train
│   ├── train_10
│   ├── train_5
│   ├── valid
│   └── test
├── SNIPS
│   ├── train
│   ├── valid
│   └── test
├── ATIS
│   ├── train
│   ├── valid
│   └── test
├── BANKING77-OOS
│   ├── train
│   ├── valid
│   ├── test
│   ├── id-oos
│   │   ├──train
│   │   ├──valid
│   │   └──test
│   ├── ood-oos
│       ├──valid
│       └──test
├── CLINC-Single-Domain-OOS
│   ├── banking
│   │   ├── train
│   │   ├── valid
│   │   ├── test
│   │   ├── id-oos
│   │   │   ├──valid
│   │   │   └──test
│   │   ├── ood-oos
│   │       ├──valid
│   │       └──test
│   ├── credit_cards
│   │   ├── train
│   │   ├── valid
│   │   ├── test
│   │   ├── id-oos
│   │   │   ├──valid
│   │   │   └──test
│   │   ├── ood-oos
│   │       ├──valid
└── └──     └──test

Briefly describe the BANKING77-OOS dataset.

  • A dataset with a single banking domain, includes both general Out-of-Scope (OOD-OOS) queries and In-Domain but Out-of-Scope (ID-OOS) queries, where ID-OOS queries are semantically similar intents/queries with in-scope intents. BANKING77 originally includes 77 intents. BANKING77-OOS includes 50 in-scope intents in this dataset, and the ID-OOS queries are built up based on 27 held-out semantically similar in-scope intents.

Briefly describe the CLINC-Single-Domain-OOS dataset.

  • A dataset with two separate domains, i.e., the "Banking'' domain and the "Credit cards'' domain with both general Out-of-Scope (OOD-OOS) queries and In-Domain but Out-of-Scope (ID-OOS) queries, where ID-OOS queries are semantically similar intents/queries with in-scope intents. Each domain in CLINC150 originally includes 15 intents. Each domain in the new dataset includes ten in-scope intents in this dataset, and the ID-OOS queries are built up based on five held-out semantically similar in-scope intents.

Both datasets can be used to conduct intent detection with and without OOD-OOS and ID-OOS queries

You can easily load the processed data:

class IntentExample:
    def __init__(self, text, label, do_lower_case):
        self.original_text = text
        self.text = text
        self.label = label

        if do_lower_case:
            self.text = self.text.lower()
        
def load_intent_examples(file_path, do_lower_case=True):
    examples = []

    with open('{}/seq.in'.format(file_path), 'r', encoding="utf-8") as f_text, open('{}/label'.format(file_path), 'r', encoding="utf-8") as f_label:
        for text, label in zip(f_text, f_label):
            e = IntentExample(text.strip(), label.strip(), do_lower_case)
            examples.append(e)

    return examples

More details can check code for load data and do random sampling for few-shot learning.

State-of-the art models and baselines

DNNC

Download pre-trained RoBERTa NLI checkpoint:

wget https://storage.googleapis.com/sfr-dnnc-few-shot-intent/roberta_nli.zip

Access to public code: Link

CONVERT

Download pre-trained checkpoint:

wget https://github.com/connorbrinton/polyai-models/releases/download/v1.0/model.tar.gz

Access to public code:

wget https://github.com/connorbrinton/polyai-models/archive/refs/tags/v1.0.zip

CONVBERT

Download pre-trained checkpoints:

Step-1: install AWS CL2: e.g., install MacOS PKG

Step-2:

aws s3 cp s3://dialoglue/ --no-sign-request `Your_folder_name` --recursive

Then the checkpoints are downloaded into Your_folder_name

Few-shot intent detection baselines/leaderboard:

5-shot learning

Model BANKING77 CLICN150 HWU64
RoBERTa+Classifier (EMNLP 2020) 74.04 87.99 75.56
USE (ACL 2020 NLP4ConvAI) 76.29 87.82 77.79
CONVERT (ACL 2020 NLP4ConvAI) 75.32 89.22 76.95
USE+CONVERT (ACL 2020 NLP4ConvAI) 77.75 90.49 80.01
CONVBERT+MLM+Example+Observers (NAACL 2021) - - -
DNNC (EMNLP 2020) 80.40 91.02 80.46
CPFT (EMNLP 2021) 80.86 92.34 82.03

10-shot learning

Model BANKING77 CLICN150 HWU64
RoBERTa+Classifier (EMNLP 2020) 84.27 91.55 82.90
USE (ACL 2020 NLP4ConvAI) 84.23 90.85 83.75
CONVERT(ACL 2020 NLP4ConvAI) 83.32 92.62 82.65
USE+CONVERT (ACL 2020 NLP4ConvAI) 85.19 93.26 85.83
CONVBERT (ArXiv 2020) 83.63 92.10 83.77
CONVBERT+MLM (ArXiv 2020) 83.99 92.75 84.52
CONVBERT+MLM+Example+Observers (NAACL 2021) 85.95 93.97 86.28
DNNC (EMNLP 2020) 86.71 93.76 84.72
CPFT (EMNLP 2021) 87.20 94.18 87.13

Note: the 5-shot learning results of RoBERTa+Classifier, DNNC and CPFT, and the 10-shot learning results of all the models are reported by the paper authors.

Citation

Please cite our paper if you use above resources in your work:

@article{zhang2020discriminative,
  title={Discriminative nearest neighbor few-shot intent detection by transferring natural language inference},
  author={Zhang, Jian-Guo and Hashimoto, Kazuma and Liu, Wenhao and Wu, Chien-Sheng and Wan, Yao and Yu, Philip S and Socher, Richard and Xiong, Caiming},
  journal={EMNLP},
  pages={5064--5082},
  year={2020}
}

@article{zhang2021pretrained,
  title={Are Pretrained Transformers Robust in Intent Classification? A Missing Ingredient in Evaluation of Out-of-Scope Intent Detection},
  author={Zhang, Jian-Guo and Hashimoto, Kazuma and Wan, Yao and Liu, Ye and Xiong, Caiming and Yu, Philip S},
  journal={arXiv preprint arXiv:2106.04564},
  year={2021}
}

@article{zhang2021few,
  title={Few-Shot Intent Detection via Contrastive Pre-Training and Fine-Tuning},
  author={Zhang, Jianguo and Bui, Trung and Yoon, Seunghyun and Chen, Xiang and Liu, Zhiwei and Xia, Congying and Tran, Quan Hung and Chang, Walter and Yu, Philip},
  journal={EMNLP},
  year={2021}
}
Owner
Jian-Guo Zhang
Jian-Guo Zhang
给yolov5加个gui界面,使用pyqt5,yolov5是5.0版本

博文地址 https://xugaoxiang.com/2021/06/30/yolov5-pyqt5 代码执行 项目中使用YOLOv5的v5.0版本,界面文件是project.ui pip install -r requirements.txt python main.py 图片检测 视频检测

Xu GaoXiang 215 Dec 30, 2022
Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency

Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency This is a official implementation of the CycleContrast introduced in

13 Nov 14, 2022
[ICCV21] Official implementation of the "Social NCE: Contrastive Learning of Socially-aware Motion Representations" in PyTorch.

Social-NCE + CrowdNav Website | Paper | Video | Social NCE + Trajectron | Social NCE + STGCNN This is an official implementation for Social NCE: Contr

VITA lab at EPFL 125 Dec 23, 2022
The implemention of Video Depth Estimation by Fusing Flow-to-Depth Proposals

Flow-to-depth (FDNet) video-depth-estimation This is the implementation of paper Video Depth Estimation by Fusing Flow-to-Depth Proposals Jiaxin Xie,

32 Jun 14, 2022
Implementations of CNNs, RNNs, GANs, etc

Tensorflow Programs and Tutorials This repository will contain Tensorflow tutorials on a lot of the most popular deep learning concepts. It'll also co

Adit Deshpande 1k Dec 30, 2022
A object detecting neural network powered by the yolo architecture and leveraging the PyTorch framework and associated libraries.

Yolo-Powered-Detector A object detecting neural network powered by the yolo architecture and leveraging the PyTorch framework and associated libraries

Luke Wilson 1 Dec 03, 2021
Contrastive Fact Verification

VitaminC This repository contains the dataset and models for the NAACL 2021 paper: Get Your Vitamin C! Robust Fact Verification with Contrastive Evide

47 Dec 19, 2022
StarGAN2 for practice

StarGAN2 for practice This version of StarGAN2 (coined as 'Post-modern Style Transfer') is intended mostly for fellow artists, who rarely look at scie

vadim epstein 87 Sep 24, 2022
Colar: Effective and Efficient Online Action Detection by Consulting Exemplars, CVPR 2022.

Colar: Effective and Efficient Online Action Detection by Consulting Exemplars This repository is the official implementation of Colar. In this work,

LeYang 246 Dec 13, 2022
NeRF visualization library under construction

NeRF visualization library using PlenOctrees, under construction pip install nerfvis Docs will be at: https://nerfvis.readthedocs.org import nerfvis s

Alex Yu 196 Jan 04, 2023
Easily benchmark PyTorch model FLOPs, latency, throughput, max allocated memory and energy consumption

⏱ pytorch-benchmark Easily benchmark model inference FLOPs, latency, throughput, max allocated memory and energy consumption Install pip install pytor

Lukas Hedegaard 21 Dec 22, 2022
Pytorch reimplementation of the Vision Transformer (An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale)

Vision Transformer Pytorch reimplementation of Google's repository for the ViT model that was released with the paper An Image is Worth 16x16 Words: T

Eunkwang Jeon 1.4k Dec 28, 2022
A weakly-supervised scene graph generation codebase. The implementation of our CVPR2021 paper ``Linguistic Structures as Weak Supervision for Visual Scene Graph Generation''

README.md shall be finished soon. WSSGG 0 Overview 1 Installation 1.1 Faster-RCNN 1.2 Language Parser 1.3 GloVe Embeddings 2 Settings 2.1 VG-GT-Graph

Keren Ye 35 Nov 20, 2022
SW components and demos for visual kinship recognition. An emphasis is put on the FIW dataset-- data loaders, benchmarks, results in summary.

FIW Data Development Kit Table of Contents Introduction Families In the Wild Database Publications Organization To Do License Getting Involved Introdu

Joseph P. Robinson 12 Jun 04, 2022
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning plugins for distributed training using the Ray distributed compu

167 Jan 02, 2023
Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly

Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly Code for this paper Ultra-Data-Efficient GAN Tra

VITA 77 Oct 05, 2022
PyTorch implementation of the paper: Long-tail Learning via Logit Adjustment

logit-adj-pytorch PyTorch implementation of the paper: Long-tail Learning via Logit Adjustment This code implements the paper: Long-tail Learning via

Chamuditha Jayanga 53 Dec 23, 2022
🛰️ List of earth observation companies and job sites

Earth Observation Companies & Jobs source Portals & Jobs Geospatial Geospatial jobs newsletter: ~biweekly newsletter with geospatial jobs by Ali Ahmad

Dahn 64 Dec 27, 2022
Restricted Boltzmann Machines in Python.

How to Use First, initialize an RBM with the desired number of visible and hidden units. rbm = RBM(num_visible = 6, num_hidden = 2) Next, train the m

Edwin Chen 928 Dec 30, 2022
Tutorial for the PERFECTING FACTORY 5.0 WITH EDGE-POWERED AI workshop

Workshop Advantech Jetson Nano This tutorial has been designed for the PERFECTING FACTORY 5.0 WITH EDGE-POWERED AI workshop in collaboration with Adva

Edge Impulse 18 Nov 22, 2022