StarGAN2 for practice

Overview

StarGAN2 for practice

This version of StarGAN2 (coined as 'Post-modern Style Transfer') is intended mostly for fellow artists, who rarely look at scientific metrics, but rather need a working creative tool. At least, this is what I use nearly daily myself.
Here are few pieces, made with it: Terminal Blink, Occurro, etc.
Tested on Pytorch 1.4-1.8. Sequence-to-video conversions require FFMPEG. For more explicit details refer to the original implementation.

Features

  • streamlined workflow, focused on practical tasks [TBA]
  • cleaned up and simplified code for better readability
  • stricter memory management to fit bigger batches on consumer GPUs
  • models mixing (SWA) for better stability

NB: In the meantime here's only training code and some basic inference (processing). More various methods & use cases may be added later.

Presumed file structure

stargan2 root
├  _in input data for processing
├  _out generation output (sequences & videos)
├  data datasets for training
│  └  afhq [example] some dataset
│     ├  cats [example] images for training
│     │  └  test [example] images for validation
│     ├  dogs [example] images for training
│     │  └  test [example] images for validation
│     └  ⋯
├  models trained models for inference/processing
│  └  afhq-256-5-100.pkl [example] trained model file
├  src source code
└  train training folders
   └  afhq.. [example] auto-created training folder

Training

  • Prepare your multi-domain dataset as shown above. Main directory should contain folders with images of different domains (e.g. cats, dogs, ..); every such folder must contain test subfolder with validation subset. Such structure allows easy data recombination for experiments. The images may be of any sizes (they'll be randomly cropped during training), but not smaller than img_size specified for training (default is 256).

  • Train StarGAN2 on the prepared dataset (e.g. afhq):

 python src/train.py --data_dir data/afhq --model_dir train/afhq --img_size 256 --batch 8

This will run training process, according to the settings in src/train.py (check and explore those!). Models are saved under train/afhq and named as dataset-size-domaincount-kimgs, e.g. afhq-256-5-100.ckpt (required for resuming).

  • Resume training on the same dataset from the iteration 50 (thousands), presuming there's corresponding complete 3-models set (with nets and optims) in train/afhq:
 python src/train.py --data_dir data/afhq --model_dir train/afhq --img_size 256 --batch 8 --resume 50
  • Make an averaged model (only for generation) from the directory of those, e.g. train/select:
 python src/swa.py -i train/select 

Few personal findings

  1. Batch size is crucial for this network! Official settings are batch=8 for size 256, if you have large GPU RAM. One can fit batch 3 or 4 on 11gb GPU; those results are interesting, but less impressive. Batches of 2 or 1 are for the brave only.. Size is better kept as 256; the network has auto-scaling layer count, but I didn't manage to get comparable results for size 512 with batches up to 7 (max for 32gb).
  2. Model weights may seriously oscillate during training, especially for small batches (typical for Cycle- or Star- GANs), so it's better to save models frequently (there may be jewels). The best selected models can be mixed together with swa.py script for better stability. By default, Generator network is saved every 1000 iterations, and the full set - every 5000 iterations. 100k iterations (few days on a single GPU) may be enough; 200-250k would give pretty nice overfit.
  3. Lambda coefficients lambda_ds (diversity), lambda_cyc (reconstruction) and lambda_sty (style) may be increased for smaller batches, especially if the goal is stylization, rather than photo-realistic transformation. The videos above, for instance, were made with these lambdas equal 3. The reference-based generation is nearly lost with such settings, but latent-based one can make nice art.
  4. The order of domains in the training set matters a lot! I usually put some photos first (as it will be the main source imagery), and the closest to photoreal as second; but other approaches may go well too (and your mileage may vary).
  5. I particularly love this network for its' failures. Even the flawed results (when the batches are small, the lambdas are wrong, etc.) are usually highly expressive and "inventive", just the kind of "AI own art", which is so spoken about. Experimenting with such aesthetics is a great fun.

Generation

  • Transform image test.jpg with AFHQ model (can be downloaded here):
python src/test.py --source test.jpg --model models/100000_nets_ema.ckpt

This will produce 3 images (one per trained domain in the model) in the _out directory.
If source is a directory, every image in it will be processed accordingly.

  • Generate output for the domain(s), referenced by number(s):
python src/test.py --source test.jpg --model models/100000_nets_ema.ckpt --ref 2
  • Generate output with reference image for domain 1 (ref filename must start with that number):
python src/test.py --source test.jpg --model models/100000_nets_ema.ckpt --ref 1-ref.jpg

To be continued..

Credits

StarGAN2
Copyright © 2020, NAVER Corp. All rights reserved.
Made available under Creative Commons BY-NC 4.0 license.
Original paper: https://arxiv.org/abs/1912.01865

Owner
vadim epstein
vadim epstein
Baleen: Robust Multi-Hop Reasoning at Scale via Condensed Retrieval (NeurIPS'21)

Baleen Baleen is a state-of-the-art model for multi-hop reasoning, enabling scalable multi-hop search over massive collections for knowledge-intensive

Stanford Future Data Systems 22 Dec 05, 2022
Unsupervised Representation Learning by Invariance Propagation

Unsupervised Learning by Invariance Propagation This repository is the official implementation of Unsupervised Learning by Invariance Propagation. Pre

FengWang 15 Jul 06, 2022
ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs

ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs This is the code of paper ConE: Cone Embeddings for Multi-Hop Reasoning over Knowl

MIRA Lab 33 Dec 07, 2022
Sentiment analysis translations of the Bhagavad Gita

Sentiment and Semantic Analysis of Bhagavad Gita Translations It is well known that translations of songs and poems not only breaks rhythm and rhyming

Machine learning and Bayesian inference @ UNSW Sydney 3 Aug 01, 2022
[NeurIPS 2020] Code for the paper "Balanced Meta-Softmax for Long-Tailed Visual Recognition"

Balanced Meta-Softmax Code for the paper Balanced Meta-Softmax for Long-Tailed Visual Recognition Jiawei Ren, Cunjun Yu, Shunan Sheng, Xiao Ma, Haiyu

Jiawei Ren 65 Dec 21, 2022
Fluency ENhanced Sentence-bert Evaluation (FENSE), metric for audio caption evaluation. And Benchmark dataset AudioCaps-Eval, Clotho-Eval.

FENSE The metric, Fluency ENhanced Sentence-bert Evaluation (FENSE), for audio caption evaluation, proposed in the paper "Can Audio Captions Be Evalua

Zhiling Zhang 13 Dec 23, 2022
Code for the paper "VisualBERT: A Simple and Performant Baseline for Vision and Language"

This repository contains code for the following two papers: VisualBERT: A Simple and Performant Baseline for Vision and Language (arxiv) with a short

Natural Language Processing @UCLA 463 Dec 09, 2022
[ICCV 2021 Oral] Deep Evidential Action Recognition

DEAR (Deep Evidential Action Recognition) Project | Paper & Supp Wentao Bao, Qi Yu, Yu Kong International Conference on Computer Vision (ICCV Oral), 2

Wentao Bao 80 Jan 03, 2023
Jupyter Dock is a set of Jupyter Notebooks for performing molecular docking protocols interactively, as well as visualizing, converting file formats and analyzing the results.

Molecular Docking integrated in Jupyter Notebooks Description | Citation | Installation | Examples | Limitations | License Table of content Descriptio

Angel J. Ruiz Moreno 173 Dec 25, 2022
Code for "Discovering Non-monotonic Autoregressive Orderings with Variational Inference" (paper and code updated from ICLR 2021)

Discovering Non-monotonic Autoregressive Orderings with Variational Inference Description This package contains the source code implementation of the

Xuanlin (Simon) Li 10 Dec 29, 2022
Dynamic View Synthesis from Dynamic Monocular Video

Dynamic View Synthesis from Dynamic Monocular Video Project Website | Video | Paper Dynamic View Synthesis from Dynamic Monocular Video Chen Gao, Ayus

Chen Gao 139 Dec 28, 2022
CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss

CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss This is official implement of "

程星 87 Dec 24, 2022
This repo will contain code to reproduce and build upon understanding transfer learning

What is being transferred in transfer learning? This repo contains the code for the following paper: Behnam Neyshabur*, Hanie Sedghi*, Chiyuan Zhang*.

4 Jun 16, 2021
Facial expression detector

A tensorflow convolutional neural network model to detect facial expressions.

Carlos Tardón Rubio 5 Apr 20, 2022
General-purpose program synthesiser

DeepSynth General-purpose program synthesiser. This is the repository for the code of the paper "Scaling Neural Program Synthesis with Distribution-ba

Nathanaël Fijalkow 24 Oct 23, 2022
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation Ported from https://github.com/hzwer/arXiv2020-RIFE Dependencies NumPy

49 Jan 07, 2023
The implementation of our CIKM 2021 paper titled as: "Cross-Market Product Recommendation"

FOREC: A Cross-Market Recommendation System This repository provides the implementation of our CIKM 2021 paper titled as "Cross-Market Product Recomme

Hamed Bonab 16 Sep 12, 2022
6D Grasping Policy for Point Clouds

GA-DDPG [website, paper] Installation git clone https://github.com/liruiw/GA-DDPG.git --recursive Setup: Ubuntu 16.04 or above, CUDA 10.0 or above, py

Lirui Wang 48 Dec 21, 2022
PyTorch common framework to accelerate network implementation, training and validation

pytorch-framework PyTorch common framework to accelerate network implementation, training and validation. This framework is inspired by works from MML

Dongliang Cao 3 Dec 19, 2022
A Domain-Agnostic Benchmark for Self-Supervised Learning

DABS: A Domain Agnostic Benchmark for Self-Supervised Learning This repository contains the code for DABS, a benchmark for domain-agnostic self-superv

Alex Tamkin 81 Dec 09, 2022