Code to generate datasets used in "How Useful is Self-Supervised Pretraining for Visual Tasks?"

Overview

Synthetic dataset rendering

Framework for producing the synthetic datasets used in:

How Useful is Self-Supervised Pretraining for Visual Tasks?
Alejandro Newell and Jia Deng. CVPR, 2020. arXiv:2003.14323

Experiment code can be found here.

This is a general purpose synthetic setting supporting single-object or multi-object images providing annotations for object classification, object pose estimation, segmentation, and depth estimation.

Setup

Download and set up Blender 2.80 (this code has not been tested on more recent Blender versions).

Blender uses its own Python, to which we need to add an extra package. In the Blender installation, find the python directory and run:

cd path/to/blender/2.80/python/bin
./python3.7m -m ensure pip
./pip3 install gin_config

For distributed rendering and additional dataset prep, use your own Python installation (not the Blender version). Everything was tested with Python 3.7 and the following extra packages:

sudo apt install libopenexr-dev
pip install ray ray[tune] h5py openexr scikit-image

External data

Download ShapeNetCore.v2 and DTD.

By default, it is assumed external datasets will be placed in syn_benchmark/datasets (e.g. syn_benchmark/datasets/ShapeNetCore.v2). If this is not the case, change any paths as necessary in paths.py.

Dataset Generation

Try a test run with:

blender --background --python render.py -- -d test_dataset

The argument -d, --dataset_name specifies the output directory which will be placed in the directory defined by pahs.DATA_DIR. Dataset settings can be modified either by selecting a gin config file (-g) or by modifying parameters (-p), for example:

blender --background --python render.py -- -g render_multi
blender --background --python render.py -- -p "material.use_texture = False" "object.random_viewpoint = 0"
blender --background --python render.py -- -g render_multi -p "batch.num_samples = 100"

Manual arguments passed in through -p will override those in the provided gin file. Please check out config/render_single.gin to see what options can be modified.

Distributed rendering

To scale up dataset creation, rendering is split into smaller jobs that can be sent out to individual workers for parallelization on a single machine or on a cluster. The library Ray is used to manage workers automatically. This allows large-scale distributed, parallel processes which are easy to restart in case anything crashes.

Calling python distributed_render.py will by default produce small versions of the 12 single-object datasets used in the paper. Arguments are available to control the overall dataset size and to interface with Ray. The script can be modified as needed to produce individual datasets or to modify dataset properties (e.g. texture, lighting, etc).

To produce multi-object images with depth and segmentation ground truth, add the argument --is_multi.

Further processing

After running the rendering script, you will be left with a large number of individual files containing rendered images and metadata pertaining to class labels and other scene information. Before running the main experiment code it is important that this data is preprocessed.

There are two key steps:

  • consolidation of raw data to HDF5 datasets: python preprocess_data.py -d test_dataset -f
  • image resizing and preprocessing: python preprocess_data.py -d test_dataset -p

If working with EXR images produced for segmentation/depth data make sure to add the argument -e.

-f, --to_hdf5: The first step will move all image files and metadata into HDF5 dataset files.

An important step that occurs here is conversion of EXR data to PNG data. The EXR output from Blender contains both the rendered image and corresponding depth, instance segmentation, and semantic segmentation data. After running this script, the rendered image is stored as one PNG and the depth and segmentation channels are concatenated into another PNG image.

After this step, I recommend removing the original small files if disk space is a concern, all raw data is fully preserved in the img_XX.h5 files. Note, the data is stored as an encoded PNG, if you want to read the image into Python you can do the following:

f = h5py.File('path/to/your/dataset/imgs_00.h5', 'r')
img_idx = 0
png_data = f['png_images'][img_idx]

img = imageio.imread(io.BytesIO(png_data))
# or alternatively
img = util.img_read_and_resize(png_data)

-p, --preprocess: Once the raw data has been moved into HDF5 files, it can be quickly processed for use in experiments. This preprocessing simply takes care of steps that would otherwise be performed over and over again during training such as image resizing and normalization. One of the more expensive steps that is taken care of here is conversion to LAB color space.

This preprocessing step prepares a single HDF5 file which ready to be used with the experiment code. Unlike the files created in the previous step, this data has been processed and some information may be lost from the original images especially if they have been resized to a lower resolution.

Owner
Princeton Vision & Learning Lab
Princeton Vision & Learning Lab
The dataset of tweets pulling from Twitters with keyword: Hydroxychloroquine, location: US, Time: 2020

HCQ_Tweet_Dataset: FREE to Download. Keywords: HCQ, hydroxychloroquine, tweet, twitter, COVID-19 This dataset is associated with the paper "Understand

2 Mar 16, 2022
It is modified Tensorflow 2.x version of Mask R-CNN

[TF 2.X] Mask R-CNN for Object Detection and Segmentation [Notice] : The original mask-rcnn uses the tensorflow 1.X version. I modified it for tensorf

Milner 34 Nov 09, 2022
Notification Triggers for Python

Notipyer Notification triggers for Python Send async email notifications via Python. Get updates/crashlogs from your scripts with ease. Installation p

Chirag Jain 17 May 16, 2022
Contrastive Learning for Many-to-many Multilingual Neural Machine Translation(mCOLT/mRASP2), ACL2021

Contrastive Learning for Many-to-many Multilingual Neural Machine Translation(mCOLT/mRASP2), ACL2021 The code for training mCOLT/mRASP2, a multilingua

104 Jan 01, 2023
Advanced Signal Processing Notebooks and Tutorials

Advanced Digital Signal Processing Notebooks and Tutorials Prof. Dr. -Ing. Gerald Schuller Jupyter Notebooks and Videos: Renato Profeta Applied Media

Guitars.AI 115 Dec 13, 2022
Generating Band-Limited Adversarial Surfaces Using Neural Networks

Generating Band-Limited Adversarial Surfaces Using Neural Networks This is the official repository of the technical report that was published on arXiv

3 Jul 26, 2022
Understanding and Overcoming the Challenges of Efficient Transformer Quantization

Transformer Quantization This repository contains the implementation and experiments for the paper presented in Yelysei Bondarenko1, Markus Nagel1, Ti

83 Dec 30, 2022
Code for paper Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting

Decoupled Spatial-Temporal Graph Neural Networks Code for our paper: Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting.

S22 43 Jan 04, 2023
CVPR2020 Counterfactual Samples Synthesizing for Robust VQA

CVPR2020 Counterfactual Samples Synthesizing for Robust VQA This repo contains code for our paper "Counterfactual Samples Synthesizing for Robust Visu

72 Dec 22, 2022
Dyalog-apl-docset - Dyalog APL Dash Docset Generator

Dyalog APL Dash Docset Generator o alasa e kili sona kepeken tenpo lili a A Dash

Maciej Goszczycki 1 Jan 10, 2022
To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types

To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types, from a Database Taken From Dr. Wolberg reports his Clinic Cases.

Astitva Veer Garg 1 Jul 31, 2022
PyTorch implementation of "VRT: A Video Restoration Transformer"

VRT: A Video Restoration Transformer Jingyun Liang, Jiezhang Cao, Yuchen Fan, Kai Zhang, Rakesh Ranjan, Yawei Li, Radu Timofte, Luc Van Gool Computer

Jingyun Liang 837 Jan 09, 2023
ML-Decoder: Scalable and Versatile Classification Head

ML-Decoder: Scalable and Versatile Classification Head Paper Official PyTorch Implementation Tal Ridnik, Gilad Sharir, Avi Ben-Cohen, Emanuel Ben-Baru

189 Jan 04, 2023
LightNet++: Boosted Light-weighted Networks for Real-time Semantic Segmentation

LightNet++ !!!New Repo.!!! ⇒ EfficientNet.PyTorch: Concise, Modular, Human-friendly PyTorch implementation of EfficientNet with Pre-trained Weights !!

linksense 237 Jan 05, 2023
GAN-based Matrix Factorization for Recommender Systems

GAN-based Matrix Factorization for Recommender Systems This repository contains the datasets' splits, the source code of the experiments and their res

Ervin Dervishaj 9 Nov 06, 2022
a general-purpose Transformer based vision backbone

Swin Transformer By Ze Liu*, Yutong Lin*, Yue Cao*, Han Hu*, Yixuan Wei, Zheng Zhang, Stephen Lin and Baining Guo. This repo is the official implement

Microsoft 9.9k Jan 08, 2023
CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP

CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP Andreas Fürst* 1, Elisabeth Rumetshofer* 1, Viet Tran1, Hubert Ramsauer1, Fei Tang3, Joh

Institute for Machine Learning, Johannes Kepler University Linz 133 Jan 04, 2023
[ICML 2020] "When Does Self-Supervision Help Graph Convolutional Networks?" by Yuning You, Tianlong Chen, Zhangyang Wang, Yang Shen

When Does Self-Supervision Help Graph Convolutional Networks? PyTorch implementation for When Does Self-Supervision Help Graph Convolutional Networks?

Shen Lab at Texas A&M University 106 Nov 11, 2022
ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプル

ByteTrack-ONNX-Sample ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプルです。 ONNXに変換したモデルも同梱しています。 変換自体を試したい方はByteT

KazuhitoTakahashi 16 Oct 26, 2022
AI assistant built in python.the features are it can display time,say weather,open-google,youtube,instagram.

AI assistant built in python.the features are it can display time,say weather,open-google,youtube,instagram.

AK-Shanmugananthan 1 Nov 29, 2021