Code for testing various M1 Chip benchmarks with TensorFlow.

Overview

M1, M1 Pro, M1 Max Machine Learning Speed Test Comparison

This repo contains some sample code to benchmark the new M1 MacBooks (M1 Pro and M1 Max) against various other pieces of hardware.

It also has steps below to setup your M1, M1 Pro and M1 Max (steps should also for work Intel) Mac to run the code.

Who is this repo for?

You: have a new M1, M1 Pro, M1 Max machine and would like to get started doing machine learning and data science on it.

This repo: teaches you how to install the most common machine learning and data science packages (software) on your machine and make sure they run using sample code.

Machine Learning Experiments Conducted

All experiments were run with the same code. For Apple devices, TensorFlow environments were created with the steps below.

Notebook Number Experiment
00 TinyVGG model trained on CIFAR10 dataset with TensorFlow code.
01 EfficientNetB0 Feature Extractor on Food101 dataset with TensorFlow code.
02 RandomForestClassifier from Scikit-Learn trained with random search cross-validation on California Housing dataset.

Results

See the results directory.

Steps (how to test your M1 machine)

  1. Create an environment and install dependencies (see below)
  2. Clone this repo
  3. Run various notebooks (results come at the end of the notebooks)

How to setup a TensorFlow environment on M1, M1 Pro, M1 Max using Miniforge (shorter version)

If you're experienced with making environments and using the command line, follow this version. If not, see the longer version below.

  1. Download and install Homebrew from https://brew.sh. Follow the steps it prompts you to go through after installation.
  2. Download Miniforge3 (Conda installer) for macOS arm64 chips (M1, M1 Pro, M1 Max).
  3. Install Miniforge3 into home directory.
chmod +x ~/Downloads/Miniforge3-MacOSX-arm64.sh
sh ~/Downloads/Miniforge3-MacOSX-arm64.sh
source ~/miniforge3/bin/activate
  1. Restart terminal.
  2. Create a directory to setup TensorFlow environment.
mkdir tensorflow-test
cd tensorflow-test
  1. Make and activate Conda environment. Note: Python 3.8 is the most stable for using the following setup.
conda create --prefix ./env python=3.8
conda activate ./env
  1. Install TensorFlow dependencies from Apple Conda channel.
conda install -c apple tensorflow-deps
  1. Install base TensorFlow (Apple's fork of TensorFlow is called tensorflow-macos).
python -m pip install tensorflow-macos
  1. Install Apple's tensorflow-metal to leverage Apple Metal (Apple's GPU framework) for M1, M1 Pro, M1 Max GPU acceleration.
python -m pip install tensorflow-metal
  1. (Optional) Install TensorFlow Datasets to run benchmarks included in this repo.
python -m pip install tensorflow-datasets
  1. Install common data science packages.
conda install jupyter pandas numpy matplotlib scikit-learn
  1. Start Jupyter Notebook.
jupyter notebook
  1. Import dependencies and check TensorFlow version/GPU access.
import numpy as np
import pandas as pd
import sklearn
import tensorflow as tf
import matplotlib.pyplot as plt

# Check for TensorFlow GPU access
print(f"TensorFlow has access to the following devices:\n{tf.config.list_physical_devices()}")

# See TensorFlow version
print(f"TensorFlow version: {tf.__version__}")

If it all worked, you should see something like:

TensorFlow has access to the following devices:
[PhysicalDevice(name='/physical_device:CPU:0', device_type='CPU'),
PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]
TensorFlow version: 2.8.0

How to setup a TensorFlow environment on M1, M1 Pro, M1 Max using Miniforge (longer version)

If you're new to creating environments, using a new M1, M1 Pro, M1 Max machine and would like to get started running TensorFlow and other data science libraries, follow the below steps.

Note: You're going to see the term "package manager" a lot below. Think of it like this: a package manager is a piece of software that helps you install other pieces (packages) of software.

Installing package managers (Homebrew and Miniforge)

  1. Download and install Homebrew from https://brew.sh. Homebrew is a package manager that sets up a lot of useful things on your machine, including Command Line Tools for Xcode, you'll need this to run things like git. The command to install Homebrew will look something like:
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

It will explain what it's doing and what you need to do as you go.

  1. Download the most compatible version of Miniforge (minimal installer for Conda specific to conda-forge, Conda is another package manager and conda-forge is a Conda channel) from GitHub.

If you're using an M1 variant Mac, it's "Miniforge3-MacOSX-arm64" <- click for direct download.

Clicking the link above will download a shell file called Miniforge3-MacOSX-arm64.sh to your Downloads folder (unless otherwise specified).

  1. Open Terminal.

  2. We've now got a shell file capable of installing Miniforge, but to do so we'll have to modify it's permissions to make it executable.

To do so, we'll run the command chmod -x FILE_NAME which stands for "change mode of FILE_NAME to -executable".

We'll then execute (run) the program using sh.

chmod +x ~/Downloads/Miniforge3-MacOSX-arm64.sh
sh ~/Downloads/Miniforge3-MacOSX-arm64.sh
  1. This should install Miniforge3 into your home directory (~/ stands for "Home" on Mac).

To check this, we can try to activate the (base) environment, we can do so using the source command.

source ~/miniforge3/bin/activate

If it worked, you should see something like the following in your terminal window.

(base) [email protected] ~ %
  1. We've just installed some new software and for it to fully work, we'll need to restart terminal.

Creating a TensorFlow environment

Now we've got the package managers we need, it's time to install TensorFlow.

Let's setup a folder called tensorflow-test (you can call this anything you want) and install everything in there to make sure it's working.

Note: An environment is like a virtual room on your computer. For example, you use the kitchen in your house for cooking because it's got all the tools you need. It would be strange to have an oven in your bedroom. The same thing on your computer. If you're going to be working on specific software, you'll want it all in one place and not scattered everywhere else.

  1. Make a directory called tensorflow-test. This is the directory we're going to be storing our environment. And inside the environment will be the software tools we need to run TensorFlow.

We can do so with the mkdir command which stands for "make directory".

mkdir tensorflow-test
  1. Change into tensorflow-test. For the rest of the commands we'll be running them inside the directory tensorflow-test so we need to change into it.

We can do this with the cd command which stands for "change directory".

cd tensorflow-test
  1. Now we're inside the tensorflow-test directory, let's create a new Conda environment using the conda command (this command was installed when we installed Miniforge above).

We do so using conda create --prefix ./env which stands for "conda create an environment with the name file/path/to/this/folder/env". The . stands for "everything before".

For example, if I didn't use the ./env, my filepath looks like: /Users/daniel/tensorflow-test/env

conda create --prefix ./env
  1. Activate the environment. If conda created the environment correctly, you should be able to activate it using conda activate path/to/environment.

Short version:

conda activate ./env

Long version:

conda activate /Users/daniel/tensorflow-test/env

Note: It's important to activate your environment every time you'd like to work on projects that use the software you install into that environment. For example, you might have one environment for every different project you work on. And all of the different tools for that specific project are stored in its specific environment.

If activating your environment went correctly, your terminal window prompt should look something like:

(/Users/daniel/tensorflow-test/env) [email protected] tensorflow-test %
  1. Now we've got a Conda environment setup, it's time to install the software we need.

Let's start by installing various TensorFlow dependencies (TensorFlow is a large piece of software and depends on many other pieces of software).

Rather than list these all out, Apple have setup a quick command so you can install almost everything TensorFlow needs in one line.

conda install -c apple tensorflow-deps

The above stands for "hey conda install all of the TensorFlow dependencies from the Apple Conda channel" (-c stands for channel).

If it worked, you should see a bunch of stuff being downloaded and installed for you.

  1. Now all of the TensorFlow dependencies have been installed, it's time install base TensorFlow.

Apple have created a fork (copy) of TensorFlow specifically for Apple Macs. It has all the features of TensorFlow with some extra functionality to make it work on Apple hardware.

This Apple fork of TensorFlow is called tensorflow-macos and is the version we'll be installing:

python -m pip install tensorflow-macos

Depending on your internet connection the above may take a few minutes since TensorFlow is quite a large piece of software.

  1. Now we've got base TensorFlow installed, it's time to install tensorflow-metal.

Why?

Machine learning models often benefit from GPU acceleration. And the M1, M1 Pro and M1 Max chips have quite powerful GPUs.

TensorFlow allows for automatic GPU acceleration if the right software is installed.

And Metal is Apple's framework for GPU computing.

So Apple have created a plugin for TensorFlow (also referred to as a TensorFlow PluggableDevice) called tensorflow-metal to run TensorFlow on Mac GPUs.

We can install it using:

python -m pip install tensorflow-metal

If the above works, we should now be able to leverage our Mac's GPU cores to speed up model training with TensorFlow.

  1. (Optional) Install TensorFlow Datasets. Doing the above is enough to run TensorFlow on your machine. But if you'd like to run the benchmarks included in this repo, you'll need TensorFlow Datasets.

TensorFlow Datasets provides a collection of common machine learning datasets to test out various machine learning code.

python -m pip install tensorflow-datasets
  1. Install common data science packages. If you'd like to run the benchmarks above or work on other various data science and machine learning projects, you're likely going to need Jupyter Notebooks, pandas for data manipulation, NumPy for numeric computing, matplotlib for plotting and Scikit-Learn for traditional machine learning algorithms and processing functions.

To install those in the current environment run:

conda install jupyter pandas numpy matplotlib scikit-learn
  1. Test it out. To see if everything worked, try starting a Jupyter Notebook and importing the installed packages.
# Start a Jupyter notebook
jupyter notebook

Once the notebook is started, in the first cell:

import numpy as np
import pandas as pd
import sklearn
import tensorflow as tf
import matplotlib.pyplot as plt

# Check for TensorFlow GPU access
print(tf.config.list_physical_devices())

# See TensorFlow version
print(tf.__version__)

If it all worked, you should see something like:

TensorFlow has access to the following devices:
[PhysicalDevice(name='/physical_device:CPU:0', device_type='CPU'),
PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]
TensorFlow version: 2.5.0
  1. To see if it really worked, try running one of the notebooks above end to end!

And then compare your results to the benchmarks above.

Owner
Daniel Bourke
Machine Learning Engineer live on YouTube.
Daniel Bourke
[PNAS2021] The neural architecture of language: Integrative modeling converges on predictive processing

The neural architecture of language: Integrative modeling converges on predictive processing Code accompanying the paper The neural architecture of la

Martin Schrimpf 36 Dec 01, 2022
Using some basic methods to show linkages and transformations of robotic arms

roboticArmVisualizer Python GUI application to create custom linkages and adjust joint angles. In the future, I plan to add 2d inverse kinematics solv

Sandesh Banskota 1 Nov 19, 2021
Unified Interface for Constructing and Managing Workflows on different workflow engines, such as Argo Workflows, Tekton Pipelines, and Apache Airflow.

Couler What is Couler? Couler aims to provide a unified interface for constructing and managing workflows on different workflow engines, such as Argo

Couler Project 781 Jan 03, 2023
Real-time ground filtering algorithm of cloud points acquired using Terrestrial Laser Scanner (TLS)

This repository contains tools to simulate the ground filtering process of a registered point cloud. The repository contains two filtering methods. The first method uses a normal vector, and fit to p

5 Aug 25, 2022
Free like Freedom

This is all very much a work in progress! More to come! ( We're working on it though! Stay tuned!) Installation Open an Anaconda Prompt (in Windows, o

2.3k Jan 04, 2023
Code for BMVC2021 paper "Boundary Guided Context Aggregation for Semantic Segmentation"

Boundary-Guided-Context-Aggregation Boundary Guided Context Aggregation for Semantic Segmentation Haoxiang Ma, Hongyu Yang, Di Huang In BMVC'2021 Pape

Haoxiang Ma 31 Jan 08, 2023
some academic posters as references. May we have in-person poster session soon!

some academic posters as references. May we have in-person poster session soon!

Bolei Zhou 472 Jan 06, 2023
Deep Learning Theory

Deep Learning Theory 整理了一些深度学习的理论相关内容,持续更新。 Overview Recent advances in deep learning theory 总结了目前深度学习理论研究的六个方向的一些结果,概述型,没做深入探讨(2021)。 1.1 complexity

fq 103 Jan 04, 2023
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering.

DeepFilterNet A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering. libDF contains Rust code used for dat

Hendrik Schröter 292 Dec 25, 2022
Image-Scaling Attacks and Defenses

Image-Scaling Attacks & Defenses This repository belongs to our publication: Erwin Quiring, David Klein, Daniel Arp, Martin Johns and Konrad Rieck. Ad

Erwin Quiring 163 Nov 21, 2022
K Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching (To appear in RA-L 2022)

KCP The official implementation of KCP: k Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching, accepted for p

Yu-Kai Lin 109 Dec 14, 2022
Semantic Segmentation Architectures Implemented in PyTorch

pytorch-semseg Semantic Segmentation Algorithms Implemented in PyTorch This repository aims at mirroring popular semantic segmentation architectures i

Meet Shah 3.3k Dec 29, 2022
Cervix ROI Segmentation Using U-NET

Cervix ROI Segmentation Using U-NET Overview This code illustrate how to segment the ROI in cervical images using U-NET. The ROI here meant to include

Scotty Kwok 35 Sep 14, 2022
Moment-DETR code and QVHighlights dataset

Moment-DETR QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries Jie Lei, Tamara L. Berg, Mohit Bansal For dataset de

Jie Lei 雷杰 133 Dec 22, 2022
Unofficial keras(tensorflow) implementation of MAE model from Masked Autoencoders Are Scalable Vision Learners

MAE-keras Unofficial keras(tensorflow) implementation of MAE model described in 'Masked Autoencoders Are Scalable Vision Learners'. This work has been

Yewon 11 Jun 12, 2022
Implementation of Gans

GAN Generative Adverserial Networks are an approach to generative data modelling using Deep learning methods. I have currently implemented : DCGAN on

Sibam Parida 5 Sep 07, 2021
A Streamlit component to render ECharts.

Streamlit - ECharts A Streamlit component to display ECharts. Install pip install streamlit-echarts Usage This library provides 2 functions to display

Fanilo Andrianasolo 290 Dec 30, 2022
Back to the Feature: Learning Robust Camera Localization from Pixels to Pose (CVPR 2021)

Back to the Feature with PixLoc We introduce PixLoc, a neural network for end-to-end learning of camera localization from an image and a 3D model via

Computer Vision and Geometry Lab 610 Jan 05, 2023
Make a Turtlebot3 follow a figure 8 trajectory and create a robot arm and make it follow a trajectory

HW2 - ME 495 Overview Part 1: Makes the robot move in a figure 8 shape. The robot starts moving when launched on a real turtlebot3 and can be paused a

Devesh Bhura 0 Oct 21, 2022
Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021, Pytorch)

S2VD Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021) Requirements and Dependencies Ubuntu 16.04, cuda 10.0 Python 3.6.10, P

Zongsheng Yue 53 Nov 23, 2022