Code for testing various M1 Chip benchmarks with TensorFlow.

Overview

M1, M1 Pro, M1 Max Machine Learning Speed Test Comparison

This repo contains some sample code to benchmark the new M1 MacBooks (M1 Pro and M1 Max) against various other pieces of hardware.

It also has steps below to setup your M1, M1 Pro and M1 Max (steps should also for work Intel) Mac to run the code.

Who is this repo for?

You: have a new M1, M1 Pro, M1 Max machine and would like to get started doing machine learning and data science on it.

This repo: teaches you how to install the most common machine learning and data science packages (software) on your machine and make sure they run using sample code.

Machine Learning Experiments Conducted

All experiments were run with the same code. For Apple devices, TensorFlow environments were created with the steps below.

Notebook Number Experiment
00 TinyVGG model trained on CIFAR10 dataset with TensorFlow code.
01 EfficientNetB0 Feature Extractor on Food101 dataset with TensorFlow code.
02 RandomForestClassifier from Scikit-Learn trained with random search cross-validation on California Housing dataset.

Results

See the results directory.

Steps (how to test your M1 machine)

  1. Create an environment and install dependencies (see below)
  2. Clone this repo
  3. Run various notebooks (results come at the end of the notebooks)

How to setup a TensorFlow environment on M1, M1 Pro, M1 Max using Miniforge (shorter version)

If you're experienced with making environments and using the command line, follow this version. If not, see the longer version below.

  1. Download and install Homebrew from https://brew.sh. Follow the steps it prompts you to go through after installation.
  2. Download Miniforge3 (Conda installer) for macOS arm64 chips (M1, M1 Pro, M1 Max).
  3. Install Miniforge3 into home directory.
chmod +x ~/Downloads/Miniforge3-MacOSX-arm64.sh
sh ~/Downloads/Miniforge3-MacOSX-arm64.sh
source ~/miniforge3/bin/activate
  1. Restart terminal.
  2. Create a directory to setup TensorFlow environment.
mkdir tensorflow-test
cd tensorflow-test
  1. Make and activate Conda environment. Note: Python 3.8 is the most stable for using the following setup.
conda create --prefix ./env python=3.8
conda activate ./env
  1. Install TensorFlow dependencies from Apple Conda channel.
conda install -c apple tensorflow-deps
  1. Install base TensorFlow (Apple's fork of TensorFlow is called tensorflow-macos).
python -m pip install tensorflow-macos
  1. Install Apple's tensorflow-metal to leverage Apple Metal (Apple's GPU framework) for M1, M1 Pro, M1 Max GPU acceleration.
python -m pip install tensorflow-metal
  1. (Optional) Install TensorFlow Datasets to run benchmarks included in this repo.
python -m pip install tensorflow-datasets
  1. Install common data science packages.
conda install jupyter pandas numpy matplotlib scikit-learn
  1. Start Jupyter Notebook.
jupyter notebook
  1. Import dependencies and check TensorFlow version/GPU access.
import numpy as np
import pandas as pd
import sklearn
import tensorflow as tf
import matplotlib.pyplot as plt

# Check for TensorFlow GPU access
print(f"TensorFlow has access to the following devices:\n{tf.config.list_physical_devices()}")

# See TensorFlow version
print(f"TensorFlow version: {tf.__version__}")

If it all worked, you should see something like:

TensorFlow has access to the following devices:
[PhysicalDevice(name='/physical_device:CPU:0', device_type='CPU'),
PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]
TensorFlow version: 2.8.0

How to setup a TensorFlow environment on M1, M1 Pro, M1 Max using Miniforge (longer version)

If you're new to creating environments, using a new M1, M1 Pro, M1 Max machine and would like to get started running TensorFlow and other data science libraries, follow the below steps.

Note: You're going to see the term "package manager" a lot below. Think of it like this: a package manager is a piece of software that helps you install other pieces (packages) of software.

Installing package managers (Homebrew and Miniforge)

  1. Download and install Homebrew from https://brew.sh. Homebrew is a package manager that sets up a lot of useful things on your machine, including Command Line Tools for Xcode, you'll need this to run things like git. The command to install Homebrew will look something like:
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

It will explain what it's doing and what you need to do as you go.

  1. Download the most compatible version of Miniforge (minimal installer for Conda specific to conda-forge, Conda is another package manager and conda-forge is a Conda channel) from GitHub.

If you're using an M1 variant Mac, it's "Miniforge3-MacOSX-arm64" <- click for direct download.

Clicking the link above will download a shell file called Miniforge3-MacOSX-arm64.sh to your Downloads folder (unless otherwise specified).

  1. Open Terminal.

  2. We've now got a shell file capable of installing Miniforge, but to do so we'll have to modify it's permissions to make it executable.

To do so, we'll run the command chmod -x FILE_NAME which stands for "change mode of FILE_NAME to -executable".

We'll then execute (run) the program using sh.

chmod +x ~/Downloads/Miniforge3-MacOSX-arm64.sh
sh ~/Downloads/Miniforge3-MacOSX-arm64.sh
  1. This should install Miniforge3 into your home directory (~/ stands for "Home" on Mac).

To check this, we can try to activate the (base) environment, we can do so using the source command.

source ~/miniforge3/bin/activate

If it worked, you should see something like the following in your terminal window.

(base) [email protected] ~ %
  1. We've just installed some new software and for it to fully work, we'll need to restart terminal.

Creating a TensorFlow environment

Now we've got the package managers we need, it's time to install TensorFlow.

Let's setup a folder called tensorflow-test (you can call this anything you want) and install everything in there to make sure it's working.

Note: An environment is like a virtual room on your computer. For example, you use the kitchen in your house for cooking because it's got all the tools you need. It would be strange to have an oven in your bedroom. The same thing on your computer. If you're going to be working on specific software, you'll want it all in one place and not scattered everywhere else.

  1. Make a directory called tensorflow-test. This is the directory we're going to be storing our environment. And inside the environment will be the software tools we need to run TensorFlow.

We can do so with the mkdir command which stands for "make directory".

mkdir tensorflow-test
  1. Change into tensorflow-test. For the rest of the commands we'll be running them inside the directory tensorflow-test so we need to change into it.

We can do this with the cd command which stands for "change directory".

cd tensorflow-test
  1. Now we're inside the tensorflow-test directory, let's create a new Conda environment using the conda command (this command was installed when we installed Miniforge above).

We do so using conda create --prefix ./env which stands for "conda create an environment with the name file/path/to/this/folder/env". The . stands for "everything before".

For example, if I didn't use the ./env, my filepath looks like: /Users/daniel/tensorflow-test/env

conda create --prefix ./env
  1. Activate the environment. If conda created the environment correctly, you should be able to activate it using conda activate path/to/environment.

Short version:

conda activate ./env

Long version:

conda activate /Users/daniel/tensorflow-test/env

Note: It's important to activate your environment every time you'd like to work on projects that use the software you install into that environment. For example, you might have one environment for every different project you work on. And all of the different tools for that specific project are stored in its specific environment.

If activating your environment went correctly, your terminal window prompt should look something like:

(/Users/daniel/tensorflow-test/env) [email protected] tensorflow-test %
  1. Now we've got a Conda environment setup, it's time to install the software we need.

Let's start by installing various TensorFlow dependencies (TensorFlow is a large piece of software and depends on many other pieces of software).

Rather than list these all out, Apple have setup a quick command so you can install almost everything TensorFlow needs in one line.

conda install -c apple tensorflow-deps

The above stands for "hey conda install all of the TensorFlow dependencies from the Apple Conda channel" (-c stands for channel).

If it worked, you should see a bunch of stuff being downloaded and installed for you.

  1. Now all of the TensorFlow dependencies have been installed, it's time install base TensorFlow.

Apple have created a fork (copy) of TensorFlow specifically for Apple Macs. It has all the features of TensorFlow with some extra functionality to make it work on Apple hardware.

This Apple fork of TensorFlow is called tensorflow-macos and is the version we'll be installing:

python -m pip install tensorflow-macos

Depending on your internet connection the above may take a few minutes since TensorFlow is quite a large piece of software.

  1. Now we've got base TensorFlow installed, it's time to install tensorflow-metal.

Why?

Machine learning models often benefit from GPU acceleration. And the M1, M1 Pro and M1 Max chips have quite powerful GPUs.

TensorFlow allows for automatic GPU acceleration if the right software is installed.

And Metal is Apple's framework for GPU computing.

So Apple have created a plugin for TensorFlow (also referred to as a TensorFlow PluggableDevice) called tensorflow-metal to run TensorFlow on Mac GPUs.

We can install it using:

python -m pip install tensorflow-metal

If the above works, we should now be able to leverage our Mac's GPU cores to speed up model training with TensorFlow.

  1. (Optional) Install TensorFlow Datasets. Doing the above is enough to run TensorFlow on your machine. But if you'd like to run the benchmarks included in this repo, you'll need TensorFlow Datasets.

TensorFlow Datasets provides a collection of common machine learning datasets to test out various machine learning code.

python -m pip install tensorflow-datasets
  1. Install common data science packages. If you'd like to run the benchmarks above or work on other various data science and machine learning projects, you're likely going to need Jupyter Notebooks, pandas for data manipulation, NumPy for numeric computing, matplotlib for plotting and Scikit-Learn for traditional machine learning algorithms and processing functions.

To install those in the current environment run:

conda install jupyter pandas numpy matplotlib scikit-learn
  1. Test it out. To see if everything worked, try starting a Jupyter Notebook and importing the installed packages.
# Start a Jupyter notebook
jupyter notebook

Once the notebook is started, in the first cell:

import numpy as np
import pandas as pd
import sklearn
import tensorflow as tf
import matplotlib.pyplot as plt

# Check for TensorFlow GPU access
print(tf.config.list_physical_devices())

# See TensorFlow version
print(tf.__version__)

If it all worked, you should see something like:

TensorFlow has access to the following devices:
[PhysicalDevice(name='/physical_device:CPU:0', device_type='CPU'),
PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]
TensorFlow version: 2.5.0
  1. To see if it really worked, try running one of the notebooks above end to end!

And then compare your results to the benchmarks above.

Owner
Daniel Bourke
Machine Learning Engineer live on YouTube.
Daniel Bourke
git《Self-Attention Attribution: Interpreting Information Interactions Inside Transformer》(AAAI 2021) GitHub:

Self-Attention Attribution This repository contains the implementation for AAAI-2021 paper Self-Attention Attribution: Interpreting Information Intera

60 Dec 29, 2022
gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks.

gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks. It is built on top of the OpenAI G

Robin Henry 99 Dec 12, 2022
Radar-to-Lidar: Heterogeneous Place Recognition via Joint Learning

radar-to-lidar-place-recognition This page is the coder of a pre-print, implemented by PyTorch. If you have some questions on this project, please fee

Huan Yin 37 Oct 09, 2022
This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack".

Generative Dynamic Patch Attack This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack". Requirements PyTo

Xiang Li 8 Nov 17, 2022
Raptor-Multi-Tool - Raptor Multi Tool With Python

Promises 🔥 20 Stars and I'll fix every error that there is 50 Stars and we will

Aran 44 Jan 04, 2023
The official repo for CVPR2021——ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search.

ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search [paper] Introduction This is the official implementation of ViPNAS: Efficient V

Lumin 42 Sep 26, 2022
History Aware Multimodal Transformer for Vision-and-Language Navigation

History Aware Multimodal Transformer for Vision-and-Language Navigation This repository is the official implementation of History Aware Multimodal Tra

Shizhe Chen 46 Nov 23, 2022
Studying Python release adoptions by looking at PyPI downloads

Analysis of version adoptions on PyPI We get PyPI download statistics via Google's BigQuery using the pypinfo tool. Usage First you need to get an acc

Julien Palard 9 Nov 04, 2022
ObsPy: A Python Toolbox for seismology/seismological observatories.

ObsPy is an open-source project dedicated to provide a Python framework for processing seismological data. It provides parsers for common file formats

ObsPy 979 Jan 07, 2023
Unofficial Tensorflow 2 implementation of the paper Implicit Neural Representations with Periodic Activation Functions

Siren: Implicit Neural Representations with Periodic Activation Functions The unofficial Tensorflow 2 implementation of the paper Implicit Neural Repr

Seyma Yucer 2 Jun 27, 2022
MTCNN face detection implementation for TensorFlow, as a PIP package.

MTCNN Implementation of the MTCNN face detector for Keras in Python3.4+. It is written from scratch, using as a reference the implementation of MTCNN

Iván de Paz Centeno 1.9k Dec 30, 2022
NeurIPS 2021 Datasets and Benchmarks Track

AP-10K: A Benchmark for Animal Pose Estimation in the Wild Introduction | Updates | Overview | Download | Training Code | Key Questions | License Intr

AP-10K 82 Dec 11, 2022
Facilitating Database Tuning with Hyper-ParameterOptimization: A Comprehensive Experimental Evaluation

A Comprehensive Experimental Evaluation for Database Configuration Tuning This is the source code to the paper "Facilitating Database Tuning with Hype

DAIR Lab 9 Oct 29, 2022
General Assembly Capstone: NBA Game Predictor

Project 6: Predicting NBA Games Problem Statement Can I predict the results of NBA games from the back-half of a season from the opening half of the s

Adam Muhammad Klesc 1 Jan 14, 2022
Non-Attentive-Tacotron - This is Pytorch Implementation of Google's Non-attentive Tacotron.

Non-attentive Tacotron - PyTorch Implementation This is Pytorch Implementation of Google's Non-attentive Tacotron, text-to-speech system. There is som

Jounghee Kim 46 Dec 19, 2022
最新版本yolov5+deepsort目标检测和追踪,支持5.0版本可训练自己数据集

使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。

422 Dec 30, 2022
A PyTorch implementation of Radio Transformer Networks from the paper "An Introduction to Deep Learning for the Physical Layer".

An Introduction to Deep Learning for the Physical Layer An usable PyTorch implementation of the noisy autoencoder infrastructure in the paper "An Intr

Gram.AI 120 Nov 21, 2022
KoRean based ELECTRA pre-trained models (KR-ELECTRA) for Tensorflow and PyTorch

KoRean based ELECTRA (KR-ELECTRA) This is a release of a Korean-specific ELECTRA model with comparable or better performances developed by the Computa

12 Jun 03, 2022
Gym-TORCS is the reinforcement learning (RL) environment in TORCS domain with OpenAI-gym-like interface.

Gym-TORCS Gym-TORCS is the reinforcement learning (RL) environment in TORCS domain with OpenAI-gym-like interface. TORCS is the open-rource realistic

naoto yoshida 400 Dec 27, 2022
Lightweight Python library for adding real-time object tracking to any detector.

Norfair is a customizable lightweight Python library for real-time 2D object tracking. Using Norfair, you can add tracking capabilities to any detecto

Tryolabs 1.7k Jan 05, 2023