Editing a Conditional Radiance Field

Related tags

Deep Learningeditnerf
Overview

Editing Conditional Radiance Fields

Project | Paper | Video | Demo

Editing Conditional Radiance Fields
Steven Liu, Xiuming Zhang, Zhoutong Zhang, Richard Zhang, Jun-Yan Zhu, Bryan Russell
MIT, Adobe Research, CMU
in arXiv:2105.06466, 2021.

Editing Results

Color Editing


Our method propagates sparse 2D user scribbles to fill an object region, rendering the edit consistently across views. The user provides a color, a foreground scribble for the region to change, and a background scribble for regions to keep unchanged. To conduct the edit, we optimize a reconstruction-based loss to encourage the model to change the color at the foreground scribble, but maintain the color on the background scribbles.

Shape Editing


Our method propagates 2D user edits to remove or add an object part, propagating the 2D edit consistently across views. For shape removal, the user scribbles over a region of the object to remove. To conduct the removal, we optimize both a reconstruction loss and a density-based loss, encouraging the model to remove density at the scribbled regions. For shape addition, the user selects an object part to paste into the instance. To conduct the addition, we optimize a reconstruction loss similar to the one used for color editing.

Color and Shape Transfer


Our method can transfer shape and color between object instances simply by swapping the color and shape codes between instances.

Editing a Real Image


Our method is able to render novel views of the real object instance and conduct color and shape editing on the instance.

Method


To propagate sparse 2D user scribbles to novel views, we learn a rich prior of plausible-looking objects by training a single radiance field over several object instances. Our architecture builds on NeRF in two ways. First, we introduce shape and color codes for each instance, allowing a single radiance field to represent multiple object instances. Second, we introduce an instance independent shape branch, which learns a generic representation of the object category. Due to our modular architecture design, only a few components of our network need to be modified during editing to effectively execute the user edit.

Getting Started

Installation

  • Clone this repo:
git clone https://github.com/stevliu/editnerf.git
cd editnerf
  • Install the dependencies
bash scripts/setup_env.sh
  • Obtain pre-trained models and editing examples:
bash scripts/setup_models.sh
  • Optionally, download the relevant datasets. This step is required to evaluate edits and for training/testing a conditional radiance field:
bash scripts/setup_data.sh

Our code is tested on using Python 3.6, PyTorch 1.3.1, and CUDA 10.1.

Editing a Conditional Radiance Field

To conduct your own edits, please check out our demo. Alternatively, you can run the demo locally using jupyter notebook and using the notebook ui/editing.ipynb.

To execute the edits used in our paper, please run:

bash scripts/editing_experiments.sh

To evaluate the edits used in our paper, please run:

bash scripts/evaluate_edits.sh

Feel free to check out additional editing examples, which can be run via scripts/additional_edits.sh.

Learning a Conditional Radiance Field

Training

To train a conditional radiance field on the PhotoShapes dataset, please run:

python run_nerf.py --config configs/photoshapes/config.txt --skip_loading

The --skip_loading flag tells the script not to load the pretrained weights during training.

To train on other datasets, or use a different model architecture, you can replace the config file with your own. Feel free to check out example config files under configs/. For additional training options, please visit inputs.py.

Evaluation

To render train and test views from a conditional radiance field, you can run:

python test_nerf.py --config config-file --render_test --render_train

where config-file is the same config file used during training.

Then, to run evaluation metrics on the rendered samples, you can run:

python utils/evaluate_reconstruction.py --expdir path-to-log-dir

To evaluate the conditional radiance fields used in our paper, please run:

bash scripts/reconstruction_experiments.sh

Training and Editing Your Own Models

To train a model on a different dataset, first setup the directory to store the dataset. The structure should be

data/
    datasetname/
        instances.txt
        instance_name1
            images
            transforms_train.json
            transforms_val.json
            trainsforms_test.json
        instance_name2
            ...
        ...

Each instance subdirectory should contain transforms_train.json, transforms_test.json, and transforms_val.json. Each of these .json files should contain the camera focal, as well as the camera extrinsics for each image. Please refer to data/photoshapes/shape09135_rank02/transforms_train.json for an example. instances.txt should contain a list of the instance names.

Then you can run python run_nerf.py --config config-file to train a conditional radiance field, and evaluate it using the instructions in the above section.

To edit the conditional radiance field, first make a directory in ui which will contain all the relevant data for the model. Then, copy over the config file, model weights, camera intrinsics, and camera extrinsics (last three are automatically saved under logs/). The directory structure should be

ui/
    datasetname/
        model.tar
        hwfs.npy
        poses.npy
        config.txt

Please refer to ui/photoshapes for an example.

Editing a Real Image

To edit a real image, we first decide on a base model to finetune to the real image. In our experiments, we use the Dosovitskiy chairs model. Then, visually estimate the pose of the image. One way to do this is by finding the nearest neighbor pose in the training set of the base model. Then, construct the dataset folder containing the .json files mentioned in the above section.

The directory structure should be

realchairname/
    images
    transforms_train.json
    transforms_val.json
    trainsforms_test.json

As an example, please refer to data/real_chairs/shape00001_charlton.

To finetune the radiance field on this image, you can run

python run_nerf.py --config base-config --real_image_dir data-dir --savedir savedir --n_iters_code_only 1000 --style_optimizer lbfgs

where base-config is the model to fit, data_dir is the directory containing the real images, and savedir is where you want to save the results. The last two flags tell the training script to first finetune the shape and color codes using LBFGS. Please refer to scripts/reconstruction_experiments.sh for an example.

To edit this instance, copy the finetuned model weights from savedir and to a subdirectory of the base model in ui. Then, copy over the camera intrinsics and camera extrinsics (located under logs/). The directory structure should be

ui/
    basemodel/
        realchair/
            model.tar
            hwfs.npy
            poses.npy

Please refer to ui/dosovitskiy_chairs/real_chair for an example.

Acknowledgments

This codebase is heavily based on the nerf-pytorch code base, and our user interface is heavily based on the GAN rewriting interface. We also use LBFGS code from PyTorch-LBFGS and job scheduling code from the GAN seeing codebase.

We thank all authors for the wonderful code!

Citation

If you use this code for your research, please cite the following work.

@misc{liu2021editing,
      title={Editing Conditional Radiance Fields},
      author={Steven Liu and Xiuming Zhang and Zhoutong Zhang and Richard Zhang and Jun-Yan Zhu and Bryan Russell},
      year={2021},
      eprint={2105.06466},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Steer OpenAI's Jukebox with Music Taggers

TagBox Steer OpenAI's Jukebox with Music Taggers! The closest thing we have to VQGAN+CLIP for music! Unsupervised Source Separation By Steering Pretra

Ethan Manilow 34 Nov 02, 2022
Rate-limit-semaphore - Semaphore implementation with rate limit restriction for async-style (any core)

Rate Limit Semaphore Rate limit semaphore for async-style (any core) There are t

Yan Kurbatov 4 Jun 21, 2022
Baseline powergrid model for NY

Baseline-powergrid-model-for-NY Table of Contents About The Project Built With Usage License Contact Acknowledgements About The Project As the urgency

Anderson Energy Lab at Cornell 6 Nov 24, 2022
[UNMAINTAINED] Automated machine learning for analytics & production

auto_ml Automated machine learning for production and analytics Installation pip install auto_ml Getting started from auto_ml import Predictor from au

Preston Parry 1.6k Jan 02, 2023
SASM - simple crossplatform IDE for NASM, MASM, GAS and FASM assembly languages

SASM (SimpleASM) - простая кроссплатформенная среда разработки для языков ассемблера NASM, MASM, GAS, FASM с подсветкой синтаксиса и отладчиком. В SA

Dmitriy Manushin 5.6k Jan 06, 2023
Vikrant Deshpande 1 Nov 17, 2022
Open-source implementation of Google Vizier for hyper parameters tuning

Advisor Introduction Advisor is the hyper parameters tuning system for black box optimization. It is the open-source implementation of Google Vizier w

tobe 1.5k Jan 04, 2023
This repository contains the code used for Predicting Patient Outcomes with Graph Representation Learning (https://arxiv.org/abs/2101.03940).

Predicting Patient Outcomes with Graph Representation Learning This repository contains the code used for Predicting Patient Outcomes with Graph Repre

Emma Rocheteau 76 Dec 22, 2022
FS2KToolbox FS2K Dataset Towards the translation between Face

FS2KToolbox FS2K Dataset Towards the translation between Face -- Sketch. Download (photo+sketch+annotation): Google-drive, Baidu-disk, pw: FS2K. For

Deng-Ping Fan 5 Jan 03, 2023
This is the repo of the manuscript "Dual-branch Attention-In-Attention Transformer for speech enhancement"

DB-AIAT: A Dual-branch attention-in-attention transformer for single-channel SE

Guochen Yu 68 Dec 16, 2022
CSAC - Collaborative Semantic Aggregation and Calibration for Separated Domain Generalization

CSAC Introduction This repository contains the implementation code for paper: Co

ScottYuan 5 Jul 22, 2022
ByteTrack with ReID module following the paradigm of FairMOT, tracking strategy is borrowed from FairMOT/JDE.

ByteTrack_ReID ByteTrack is the SOTA tracker in MOT benchmarks with strong detector YOLOX and a simple association strategy only based on motion infor

Han GuangXin 46 Dec 29, 2022
Self-Supervised CNN-GCN Autoencoder

GCNDepth Self-Supervised CNN-GCN Autoencoder GCNDepth: Self-supervised monocular depth estimation based on graph convolutional network To be published

53 Dec 14, 2022
StarGAN v2-Tensorflow - Simple Tensorflow implementation of StarGAN v2

Official Tensorflow implementation Open ! - Clova AI StarGAN v2 — Un-official TensorFlow Implementation [Paper] [Pytorch] : Diverse Image Synthesis f

Junho Kim 110 Jul 02, 2022
Label Studio is a multi-type data labeling and annotation tool with standardized output format

Website • Docs • Twitter • Join Slack Community What is Label Studio? Label Studio is an open source data labeling tool. It lets you label data types

Heartex 11.7k Jan 09, 2023
A New Approach to Overgenerating and Scoring Abstractive Summaries

We provide the source code for the paper "A New Approach to Overgenerating and Scoring Abstractive Summaries" accepted at NAACL'21. If you find the code useful, please cite the following paper.

Kaiqiang Song 4 Apr 03, 2022
Breaking the Curse of Space Explosion: Towards Efficient NAS with Curriculum Search

Breaking the Curse of Space Explosion: Towards Effcient NAS with Curriculum Search Pytorch implementation for "Breaking the Curse of Space Explosion:

guoyong 17 Jan 03, 2023
A python/pytorch utility library

A python/pytorch utility library

Jiaqi Gu 5 Dec 02, 2022
Code for the paper: Hierarchical Reinforcement Learning With Timed Subgoals, published at NeurIPS 2021

Hierarchical reinforcement learning with Timed Subgoals (HiTS) This repository contains code for reproducing experiments from our paper "Hierarchical

Autonomous Learning Group 21 Dec 03, 2022
Realistic lighting in ursina!

Ursina Lighting Realistic lighting in ursina! If you want to have realistic lighting in ursina, import the UrsinaLighting.py in your project and use t

17 Jul 07, 2022