Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics

Overview

[AAAI2022] Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics

Overall pipeline of OCN.

Paper Link: [arXiv] [AAAI official paper]

If you find our work or the codebase inspiring and useful to your research, please cite

@article{yuan2022OCN_HOI,
  title={Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics},
  author={Yuan, Hangjie and Wang, Mang and Ni, Dong and Xu, Liangpeng},
  journal={arXiv preprint arXiv:2202.00259},
  year={2022}
}

Dataset preparation

1. HICO-DET

HICO-DET dataset can be downloaded here. After finishing downloading, unpack the tarball (hico_20160224_det.tar.gz) to the data directory.

Instead of using the original annotations files, we use the annotation files provided by the PPDM authors. The annotation files can be downloaded from here. The downloaded annotation files have to be placed as follows.

qpic
 |─ data
 │   └─ hico_20160224_det
 |       |─ annotations
 |       |   |─ trainval_hico.json
 |       |   |─ test_hico.json
 |       |   └─ corre_hico.npy
 :       :

2. V-COCO

First clone the repository of V-COCO from here, and then follow the instruction to generate the file instances_vcoco_all_2014.json. Next, download the prior file prior.pickle from here. Place the files and make directories as follows.

qpic
 |─ data
 │   └─ v-coco
 |       |─ data
 |       |   |─ instances_vcoco_all_2014.json
 |       |   :
 |       |─ prior.pickle
 |       |─ images
 |       |   |─ train2014
 |       |   |   |─ COCO_train2014_000000000009.jpg
 |       |   |   :
 |       |   └─ val2014
 |       |       |─ COCO_val2014_000000000042.jpg
 |       |       :
 |       |─ annotations
 :       :

For our implementation, the annotation file have to be converted to the HOIA format. The conversion can be conducted as follows.

PYTHONPATH=data/v-coco \
        python convert_vcoco_annotations.py \
        --load_path data/v-coco/data \
        --prior_path data/v-coco/prior.pickle \
        --save_path data/v-coco/annotations

Note that only Python2 can be used for this conversion because vsrl_utils.py in the v-coco repository shows a error with Python3.

V-COCO annotations with the HOIA format, corre_vcoco.npy, test_vcoco.json, and trainval_vcoco.json will be generated to annotations directory.

Dependencies and Training

To simplify the steps, we combine the installation of externel dependencies and training into one '.sh' file. You can directly run the codes after rightly preparing the dataset.

# Training on HICO-DET
bash train_hico.sh
# Training on V-COCO
bash train_vcoco.sh

Note that you can refer to the publicly available codebase for the preparation of two datasets.

Pre-trained parameters

OCN uses COCO pretrained models for fair comparisons with previous methods. The pretrained models can be downloaded from DETR repository.

For HICO-DET, you can convert the pre-trained parameters with the following command.

python convert_parameters.py \
        --load_path /PATH/TO/PRETRAIN \
        --save_path /PATH/TO/SAVE

For V-COCO, you can convert the pre-trained parameters with the following command.

python convert_parameters.py \
        --load_path /PATH/TO/PRETRAIN \
        --save_path /PATH/TO/SAVE \
        --dataset vcoco \

Evaluation

The mAP on HICO-DET under the Full set, Rare set and Non-Rare Set will be reported during the training process. Or you can evaluate the performance using commands below:

python main.py \
    --pretrained /PATH/TO/PRETRAINED_MODEL \
    --output_dir /PATH/TO/OUTPUT \
    --hoi \
    --dataset_file hico \
    --hoi_path /PATH/TO/data/hico_20160224_det \
    --num_obj_classes 80 \
    --num_verb_classes 117 \
    --backbone resnet101 \
    --num_workers 4 \
    --batch_size 4 \
    --exponential_hyper 1 \
    --exponential_loss \
    --semantic_similar_coef 1 \
    --verb_loss_type focal \
    --semantic_similar \
    --OCN \
    --eval \

The results for the official evaluation of V-COCO must be obtained by the generated pickle file of detection results.

python generate_vcoco_official.py \
        --param_path /PATH/TO/CHECKPOINT \
        --save_path /PATH/TO/SAVE/vcoco.pickle \
        --hoi_path /PATH/TO/VCOCO/data/v-coco \
        --batch_size 4 \
        --OCN \

Then you should run following codes after modifying the path to get the final performance:

python datasets/vsrl_eval.py

Results

Below we present the results and links for downloading corresponding parameters and logs: (The checkpoints can produce higher results than what are reported in the paper.) We will soon update this table.

Owner
A Ph.D. candidate and a realistic idealist.
Yolo Traffic Light Detection With Python

Yolo-Traffic-Light-Detection This project is based on detecting the Traffic light. Pretained data is used. This application entertained both real time

Ananta Raj Pant 2 Aug 08, 2022
Visual odometry package based on hardware-accelerated NVIDIA Elbrus library with world class quality and performance.

Isaac ROS Visual Odometry This repository provides a ROS2 package that estimates stereo visual inertial odometry using the Isaac Elbrus GPU-accelerate

NVIDIA Isaac ROS 343 Jan 03, 2023
From the basics to slightly more interesting applications of Tensorflow

TensorFlow Tutorials You can find python source code under the python directory, and associated notebooks under notebooks. Source code Description 1 b

Parag K Mital 5.6k Jan 09, 2023
Python and Julia in harmony.

PythonCall & JuliaCall Bringing Python® and Julia together in seamless harmony: Call Python code from Julia and Julia code from Python via a symmetric

Christopher Rowley 414 Jan 07, 2023
SelfRemaster: SSL Speech Restoration

SelfRemaster: Self-Supervised Speech Restoration Official implementation of SelfRemaster: Self-Supervised Speech Restoration with Analysis-by-Synthesi

Takaaki Saeki 46 Jan 07, 2023
InsTrim: Lightweight Instrumentation for Coverage-guided Fuzzing

InsTrim The paper: InsTrim: Lightweight Instrumentation for Coverage-guided Fuzzing Build Prerequisite llvm-8.0-dev clang-8.0 cmake = 3.2 Make git cl

75 Dec 23, 2022
Official source code of Fast Point Transformer, CVPR 2022

Fast Point Transformer Project Page | Paper This repository contains the official source code and data for our paper: Fast Point Transformer Chunghyun

182 Dec 23, 2022
A code implementation of AC-GC: Activation Compression with Guaranteed Convergence, in NeurIPS 2021.

Code For AC-GC: Lossy Activation Compression with Guaranteed Convergence This code is intended to be used as a supplemental material for submission to

Dave Evans 2 Nov 01, 2022
CondenseNet V2: Sparse Feature Reactivation for Deep Networks

CondenseNetV2 This repository is the official Pytorch implementation for "CondenseNet V2: Sparse Feature Reactivation for Deep Networks" paper by Le Y

Haojun Jiang 74 Dec 12, 2022
Simple Python application to transform Serial data into OSC messages

SerialToOSC-Bridge Simple Python application to transform Serial data into OSC messages. The current purpose is to be a compatibility layer between ha

Division of Applied Acoustics at Chalmers University of Technology 3 Jun 03, 2021
一个免费开源一键搭建的通用验证码识别平台,大部分常见的中英数验证码识别都没啥问题。

captcha_server 一个免费开源一键搭建的通用验证码识别平台,大部分常见的中英数验证码识别都没啥问题。 使用方法 python = 3.8 以上环境 pip install -r requirements.txt -i https://pypi.douban.com/simple gun

Sml2h3 189 Dec 02, 2022
a reimplementation of LiteFlowNet in PyTorch that matches the official Caffe version

pytorch-liteflownet This is a personal reimplementation of LiteFlowNet [1] using PyTorch. Should you be making use of this work, please cite the paper

Simon Niklaus 365 Dec 31, 2022
Python scripts to detect faces in Python with the BlazeFace Tensorflow Lite models

Python scripts to detect faces using Python with the BlazeFace Tensorflow Lite models. Tested on Windows 10, Tensorflow 2.4.0 (Python 3.8).

Ibai Gorordo 46 Nov 17, 2022
Frigate - NVR With Realtime Object Detection for IP Cameras

A complete and local NVR designed for HomeAssistant with AI object detection. Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras.

Blake Blackshear 6.4k Dec 31, 2022
A Deep Learning based project for creating line art portraits.

ArtLine The main aim of the project is to create amazing line art portraits. Sounds Intresting,let's get to the pictures!! Model-(Smooth) Model-(Quali

Vijish Madhavan 3.3k Jan 07, 2023
FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware.

FIRM-AFL FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware. FIRM-AFL addresses two fundamental problems in IoT fuzzing. First, it

356 Dec 23, 2022
LyaNet: A Lyapunov Framework for Training Neural ODEs

LyaNet: A Lyapunov Framework for Training Neural ODEs Provide the model type--config-name to train and test models configured as those shown in the pa

Ivan Dario Jimenez Rodriguez 21 Nov 21, 2022
Python scripts using the Mediapipe models for Halloween.

Mediapipe-Halloween-Examples Python scripts using the Mediapipe models for Halloween. WHY Mainly for fun. But this repository also includes useful exa

Ibai Gorordo 23 Jan 06, 2023
Code for approximate graph reduction techniques for cardinality-based DSFM, from paper

SparseCard Code for approximate graph reduction techniques for cardinality-based DSFM, from paper "Approximate Decomposable Submodular Function Minimi

Nate Veldt 1 Nov 25, 2022
Revisiting Weakly Supervised Pre-Training of Visual Perception Models

SWAG: Supervised Weakly from hashtAGs This repository contains SWAG models from the paper Revisiting Weakly Supervised Pre-Training of Visual Percepti

Meta Research 134 Jan 05, 2023