We utilize deep reinforcement learning to obtain favorable trajectories for visual-inertial system calibration.

Overview

Unified Data Collection for Visual-Inertial Calibration via Deep Reinforcement Learning

Update: The lastest code will be updated in this branch. Please switch to CORL2020 branch if you are looking for the Model-based Heuristic Deep RL approach.

Developed by Le Chen and Yunke Ao from Autonomous Systems Lab (ASL) at ETH Zurich.

1 Introduction

In this work we presents a novel formulation to learn a motion policy to be executed on a robot arm for automatic data collection for calibrating intrinsics and extrinsics jointly. Our approach models the calibration process compactly using model-free deep reinforcement learning to derive a policy that guides the motions of a robotic arm holding the sensor to efficiently collect measurements that can be used for both camera intrinsic calibration and camera-IMU extrinsic calibration. Given the current pose and collected measurements, the learned policy generates the subsequent transformation that optimizes sensor calibration accuracy. The evaluations in simulation and on a real robotic system show that our learned policy generates favorable motion trajectories and collects enough measurements efficiently that yield the desired intrinsics and extrinsics with short path lengths. In simulation we are able to perform calibrations $10\times$ faster than hand-crafted policies, which transfers to a real-world speed up of $3\times$ over a human expert.

2 Usage

Our code is tested on Ubuntu 18.04 LTS (Bionic Beaver) and ROS Melodic Morenia with GPU GTX 1660 Ti and CUDA 11.2.

2.1 Build Instructions

  • Install required dependencies:
sudo apt-get install build-essential software-properties-common
sudo apt-get install bc curl ca-certificates fakeroot gnupg2 libssl-dev lsb-release libelf-dev bison flex
sudo apt-get install ros-melodic-moveit, ros-melodic-moveit-visual-tools, ros-melodic-cmake-modules
sudo apt-get install ros-melodic-libfranka ros-melodic-franka-ros, ros-melodic-joint-trajectory-controller
sudo apt-get install ros-melodic-vision-opencv ros-melodic-image-transport-plugins
sudo apt-get install python-setuptools python-rosinstall ipython libeigen3-dev libboost-all-dev doxygen
sudo apt-get install libopencv-dev libgtk-3-dev python-catkin-tools
sudo apt-get install python-matplotlib python-scipy python-git python-pip ipython
sudo apt-get install libtbb-dev libblas-dev liblapack-dev libv4l-dev, libpoco-dev

pip install opencv-python
pip install opencv-contrib-python
pip install --upgrade tensorflow
pip install python-igraph --upgrade
pip install pyyaml
pip install rospkg
pip install matplotlib
pip install pandas
pip install pytorch
pip install wandb
pip install PyKDL
pip install gym
  • Clone the repository and catkin build:
cd ~/catkin_ws
git clone https://github.com/clthegoat/Learn-to-Calibrate.git
cd Learn-to-Calibrate
git checkout master
cd ../
mv Learn-to-Calibrate src
catkin build
source ~/catkin_ws/devel/setup.bash

2.2 Configuration

  • Please change the file saving directory in franka_cal_sim_single/config/config.yaml before training or testing!

2.3 Running the code

2.3.1 Training:

  • In terminal 1:
source ~/catkin_ws/devel/setup.bash
roslaunch franka_cal_sim_single cam_imu_ext_che.launch
  • In terminal 2:
source ~/catkin_ws/devel/setup.bash
cd src/franka_cal_sim/python/algorithms
python RL_algo_sac_int_ext.py

2.3.2 Testing:

  • In terminal 1:
source ~/catkin_ws/devel/setup.bash
roslaunch franka_cal_sim_single cam_imu_ext_che.launch
  • In terminal 2:
source ~/catkin_ws/devel/setup.bash
cd src/franka_cal_sim/python/test_policies/
python RL_algo_sac_ext_int_test.py

3 Citing

Please cite the following paper when using our code for your research:

@article{chen2020learning,
  title={Learning Trajectories for Visual-Inertial System Calibration via Model-based Heuristic Deep Reinforcement Learning},
  author={Chen, Le and Ao, Yunke and Tschopp, Florian and Cramariuc, Andrei and Breyer, Michel and Chung, Jen Jen and Siegwart, Roland and Cadena, Cesar},
  journal={arXiv preprint arXiv:2011.02574},
  year={2020}
}

4 Code reference:

Our code is based on the following repositories:

Owner
ETHZ ASL
ETHZ ASL
Realtime YOLO Monster Detection With Non Maximum Supression

Realtime-YOLO-Monster-Detection-With-Non-Maximum-Supression Table of Contents In

5 Oct 07, 2022
Implementation of Memformer, a Memory-augmented Transformer, in Pytorch

Memformer - Pytorch Implementation of Memformer, a Memory-augmented Transformer, in Pytorch. It includes memory slots, which are updated with attentio

Phil Wang 60 Nov 06, 2022
Transfer SemanticKITTI labeles into other dataset/sensor formats.

LiDAR-Transfer Transfer SemanticKITTI labeles into other dataset/sensor formats. Content Convert datasets (NUSCENES, FORD, NCLT) to KITTI format Minim

Photogrammetry & Robotics Bonn 64 Nov 21, 2022
SatelliteSfM - A library for solving the satellite structure from motion problem

Satellite Structure from Motion Maintained by Kai Zhang. Overview This is a libr

Kai Zhang 190 Dec 08, 2022
Implementation of the paper "Fine-Tuning Transformers: Vocabulary Transfer"

Transformer-vocabulary-transfer Implementation of the paper "Fine-Tuning Transfo

LEYA 13 Nov 30, 2022
Franka Emika Panda manipulator kinematics&dynamics simulation

pybullet_sim_panda Pybullet simulation environment for Franka Emika Panda Dependency pybullet, numpy, spatial_math_mini Simple example (please check s

0 Jan 20, 2022
An implementation of the [Hierarchical (Sig-Wasserstein) GAN] algorithm for large dimensional Time Series Generation

Hierarchical GAN for large dimensional financial market data Implementation This repository is an implementation of the [Hierarchical (Sig-Wasserstein

11 Nov 29, 2022
Official PyTorch implementation of "Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets" (ICLR 2021)

Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets This is the official PyTorch implementation for the paper Rapid Neural A

48 Dec 26, 2022
A large-scale database for graph representation learning

A large-scale database for graph representation learning

Scott Freitas 29 Nov 25, 2022
Computational Methods Course at UdeA. Forked and size reduced from:

Computational Methods for Physics & Astronomy Book version at: https://restrepo.github.io/ComputationalMethods by: Sebastian Bustamante 2014/2015 Dieg

Diego Restrepo 11 Sep 10, 2022
Code to reproduce experiments in the paper "Explainability Requires Interactivity".

Explainability Requires Interactivity This repository contains the code to train all custom models used in the paper Explainability Requires Interacti

Digital Health & Machine Learning 5 Apr 07, 2022
Repo 4 basic seminar §How to make human machine readable"

WORK IN PROGRESS... Notebooks from the Seminar: Human Machine Readable WS21/22 Introduction into programming Georg Trogemann, Christian Heck, Mattis

experimental-informatics 3 May 29, 2022
Bayesian Optimization using GPflow

Note: This package is for use with GPFlow 1. For Bayesian optimization using GPFlow 2 please see Trieste, a joint effort with Secondmind. GPflowOpt GP

GPflow 257 Dec 26, 2022
3D-printable hand-strapped keyboard

Note: This repo has not been cleaned up and prepared for general consumption at all. This is just a dump of the project files. If there is any interes

Wojciech Baranowski 41 Dec 31, 2022
Self-describing JSON-RPC services made easy

ReflectRPC Self-describing JSON-RPC services made easy Contents What is ReflectRPC? Installation Features Datatypes Custom Datatypes Returning Errors

Andreas Heck 31 Jul 16, 2022
code for our paper "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer"

SHOT++ Code for our TPAMI submission "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer" that is ext

75 Dec 16, 2022
Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving

SalsaNext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving Abstract In this paper, we introduce SalsaNext f

308 Jan 04, 2023
i-RevNet Pytorch Code

i-RevNet: Deep Invertible Networks Pytorch implementation of i-RevNets. i-RevNets define a family of fully invertible deep networks, built from a succ

Jörn Jacobsen 378 Dec 06, 2022
The dataset and source code for our paper: "Did You Ask a Good Question? A Cross-Domain Question IntentionClassification Benchmark for Text-to-SQL"

TriageSQL The dataset and source code for our paper: "Did You Ask a Good Question? A Cross-Domain Question Intention Classification Benchmark for Text

Yusen Zhang 22 Nov 09, 2022
Probabilistic Tensor Decomposition of Neural Population Spiking Activity

Probabilistic Tensor Decomposition of Neural Population Spiking Activity Matlab (recommended) and Python (in developement) implementations of Soulat e

Hugo Soulat 6 Nov 30, 2022