Robust fine-tuning of zero-shot models

Related tags

Deep Learningwise-ft
Overview

Robust fine-tuning of zero-shot models

This repository contains code for the paper Robust fine-tuning of zero-shot models by Mitchell Wortsman*, Gabriel Ilharco*, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca Roelofs, Raphael Gontijo-Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, Ludwig Schmidt.

Abstract

Large pre-trained models such as CLIP offer consistent accuracy across a range of data distributions when performing zero-shot inference (i.e., without fine-tuning on a specific dataset). Although existing fine-tuning approaches substantially improve accuracy in-distribution, they also reduce out-of-distribution robustness. We address this tension by introducing a simple and effective method for improving robustness: ensembling the weights of the zero-shot and fine-tuned models. Compared to standard fine-tuning, the resulting weight-space ensembles provide large accuracy improvements out-of-distribution, while matching or improving in-distribution accuracy. On ImageNet and five derived distribution shifts, weight-space ensembles improve out-of-distribution accuracy by 2 to 10 percentage points while increasing in-distribution accuracy by nearly 1 percentage point relative to standard fine-tuning. These improvements come at no additional computational cost during fine-tuning or inference.

Summary figure

figure1

Compared to standard fine-tuning, weight-space ensembles for fine-tuning (WiSE-FT) improve out-of-distribution (OOD) accuracy without decreasing in-distribution (ID) performance. Top left: Zero-shot CLIP models exhibit high effective robustness and moderate in-distribution accuracy, while standard fine-tuning (end-to-end or with a linear classifier) attains higher ID accuracy and less effective robustness. Top right: Our method linearly interpolates between the zero-shot and fine-tuned models with a mixing coefficient alpha in [0,1]. Bottom: On five distribution shifts derived from ImageNet (ImageNetV2, ImageNet-R, ImageNet Sketch, ObjectNet, and ImageNet-A), WiSE-FT improves average OOD accuracy by 8.7 percentage points (pp) when fine-tuning end-to-end (+2.1 pp when fine-tuning a linear classifier) while maintaining ID accuracy.

Code

Overview

WiSE-FT can be implemented in a few lines of code in addition to standard fine-tuning, as shown below. See src/wise_ft.py for more details.

# Load models
zeroshot = ImageClassifier.load(zeroshot_checkpoint)
finetuned = ImageClassifier.load(finetuned_checkpoint)
theta_0 = zeroshot.state_dict()
theta_1 = finetuned.state_dict()

# make sure checkpoints are compatible
assert set(theta_0.keys()) == set(theta_1.keys())

# interpolate between checkpoints with mixing coefficient alpha
theta = {
    key: (1-alpha) * theta_0[key] + alpha * theta_1[key]
    for key in theta_0.keys()
}

# update the model acccording to the new weights
finetuned.load_state_dict(theta)

# evaluate
evaluate(finetuned, args)

Install dependencies

conda env create
conda activate wiseft

Add directory to PYTHONPATH:

cd wise-ft
export PYTHONPATH="$PYTHONPATH:$PWD"

Download data

When necessary, please refer to datasets.md for instructions on how to download datasets.

Run WiSE-FT

Sample command when zeroshot and fine-tuned models are available:

python src/wise_ft.py   \
    --eval-datasets=ImageNet,ImageNetV2,ImageNetR,ImageNetA,ImageNetSketch  \
    --load=models/zeroshot.pt,models/finetuned.pt  \
    --results-db=results.jsonl  \
    --save=models/wiseft  \
    --data-location=~/data \
    --alpha 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Sample command for running WiSE-FT from scratch using ViT-B/32:

python src/wise_ft.py   \
    --train-dataset=ImageNet  \
    --epochs=10  \
    --lr=0.00003  \
    --batch-size=512  \
    --cache-dir=cache  \
    --model=ViT-B/32  \
    --eval-datasets=ImageNet,ImageNetV2,ImageNetR,ImageNetA,ImageNetSketch  \
    --template=openai_imagenet_template  \
    --results-db=results.jsonl  \
    --save=models/wiseft/ViTB32  \
    --data-location=~/data \
    --alpha 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Note: the flag --freeze-encoder controls whether only a linear classifier is fine-tuned, or if all weights are fine-tuned (end-to-end).

Plotting results

Sample command for generating a scatter plot:

python src/scatter_plot.py  \
    --eval-datasets=ImageNetV2,ImageNetR,ImageNetA,ImageNetSketch  \
    --results-db=results.jsonl  \
    --save plots

We show samples of expected behavior below when running the commands above using ViT-B/16 (models can be downloaded here):

ImageNet-Sketch         ImageNet-A

ImageNet-R         ImageNetV2

ObjectNet

Citing

If you found this repository useful, please consider citing:

@article{wortsman2021robust,
  title={Robust fine-tuning of zero-shot models},
  author={Wortsman, Mitchell and Ilharco, Gabriel and Kim, Jong Wook and Li, Mike and Kornblith, Simon and Roelofs, Rebecca and Gontijo-Lopes, Raphael and Hajishirzi, Hannaneh and Farhadi, Ali and Namkoong, Hongseok and Schmidt, Ludwig},
  journal={arXiv preprint arXiv:2109.01903},
  note={\url{https://arxiv.org/abs/2109.01903}},
  year={2021}
}
Transport Mode detection - can detect the mode of transport with the help of features such as acceeration,jerk etc

title emoji colorFrom colorTo sdk app_file pinned Transport_Mode_Detector 🚀 purple yellow gradio app.py false Configuration title: string Display tit

Nishant Rajadhyaksha 3 Jan 16, 2022
Differentiable Surface Triangulation

Differentiable Surface Triangulation This is our implementation of the paper Differentiable Surface Triangulation that enables optimization for any pe

61 Dec 07, 2022
A Pytorch implementation of CVPR 2021 paper "RSG: A Simple but Effective Module for Learning Imbalanced Datasets"

RSG: A Simple but Effective Module for Learning Imbalanced Datasets (CVPR 2021) A Pytorch implementation of our CVPR 2021 paper "RSG: A Simple but Eff

120 Dec 12, 2022
Official PyTorch implementation for paper Context Matters: Graph-based Self-supervised Representation Learning for Medical Images

Context Matters: Graph-based Self-supervised Representation Learning for Medical Images Official PyTorch implementation for paper Context Matters: Gra

49 Nov 23, 2022
SEC'21: Sparse Bitmap Compression for Memory-Efficient Training onthe Edge

Training Deep Learning Models on The Edge Training on the Edge enables continuous learning from new data for deployed neural networks on memory-constr

Brown University Scale Lab 4 Nov 18, 2022
Run PowerShell command without invoking powershell.exe

PowerLessShell PowerLessShell rely on MSBuild.exe to remotely execute PowerShell scripts and commands without spawning powershell.exe. You can also ex

Mr.Un1k0d3r 1.2k Jan 03, 2023
FluxTraining.jl gives you an endlessly extensible training loop for deep learning

A flexible neural net training library inspired by fast.ai

86 Dec 31, 2022
This is the code of paper ``Contrastive Coding for Active Learning under Class Distribution Mismatch'' with python.

Contrastive Coding for Active Learning under Class Distribution Mismatch Official PyTorch implementation of ["Contrastive Coding for Active Learning u

21 Dec 22, 2022
This project aims to be a handler for input creation and running of multiple RICEWQ simulations.

What is autoRICEWQ? This project aims to be a handler for input creation and running of multiple RICEWQ simulations. What is RICEWQ? From the descript

Yass Fuentes 1 Feb 01, 2022
Offline Reinforcement Learning with Implicit Q-Learning

Offline Reinforcement Learning with Implicit Q-Learning This repository contains the official implementation of Offline Reinforcement Learning with Im

Ilya Kostrikov 126 Jan 06, 2023
Hashformers is a framework for hashtag segmentation with transformers.

Hashtag segmentation is the task of automatically inserting the missing spaces between the words in a hashtag. Hashformers applies Transformer models

Ruan Chaves 41 Nov 09, 2022
State-to-Distribution (STD) Model

State-to-Distribution (STD) Model In this repository we provide exemplary code on how to construct and evaluate a state-to-distribution (STD) model fo

<a href=[email protected]"> 2 Apr 07, 2022
Collision risk estimation using stochastic motion models

collision_risk_estimation Collision risk estimation using stochastic motion models. This is a new approach, based on stochastic models, to predict the

Unmesh 7 Jun 26, 2022
Continuous Query Decomposition for Complex Query Answering in Incomplete Knowledge Graphs

Continuous Query Decomposition This repository contains the official implementation for our ICLR 2021 (Oral) paper, Complex Query Answering with Neura

UCL Natural Language Processing 71 Dec 29, 2022
Unimodal Face Classification with Multimodal Training

Unimodal Face Classification with Multimodal Training This is a PyTorch implementation of the following paper: Unimodal Face Classification with Multi

Wenbin Teng 3 Jul 06, 2022
CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper)

CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper) (Accepted for oral presentation at ACM

Minha Kim 1 Nov 12, 2021
"Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices", official implementation

Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices This repository contains the official PyTorch implemen

Yandex Research 21 Oct 18, 2022
Multiple paper open-source codes of the Microsoft Research Asia DKI group

📫 Paper Code Collection (MSRA DKI Group) This repo hosts multiple open-source codes of the Microsoft Research Asia DKI Group. You could find the corr

Microsoft 249 Jan 08, 2023
Reaction SMILES-AA mapping via language modelling

rxn-aa-mapper Reactions SMILES-AA sequence mapping setup conda env create -f conda.yml conda activate rxn_aa_mapper In the following we consider on ex

16 Dec 13, 2022
PyTorch Implementation of DiffGAN-TTS: High-Fidelity and Efficient Text-to-Speech with Denoising Diffusion GANs

DiffGAN-TTS - PyTorch Implementation PyTorch implementation of DiffGAN-TTS: High

Keon Lee 157 Jan 01, 2023