The open-source and free to use Python package miseval was developed to establish a standardized medical image segmentation evaluation procedure

Overview

miseval: a metric library for Medical Image Segmentation EVALuation

shield_python shield_build shield_pypi_version shield_pypi_downloads shield_license

The open-source and free to use Python package miseval was developed to establish a standardized medical image segmentation evaluation procedure. We hope that our this will help improve evaluation quality, reproducibility, and comparability in future studies in the field of medical image segmentation.

Guideline on Evaluation Metrics for Medical Image Segmentation

  1. Use DSC as main metric for validation and performance interpretation.
  2. Use AHD for interpretation on point position sensitivity (contour) if needed.
  3. Avoid any interpretations based on high pixel accuracy scores.
  4. Provide next to DSC also IoU, Sensitivity, and Specificity for method comparability.
  5. Provide sample visualizations, comparing the annotated and predicted segmentation, for visual evaluation as well as to avoid statistical bias.
  6. Avoid cherry-picking high-scoring samples.
  7. Provide histograms or box plots showing the scoring distribution across the dataset.
  8. For multi-class problems, provide metric computations for each class individually.
  9. Avoid confirmation bias through macro-averaging classes which is pushing scores via background class inclusion.
  10. Provide access to evaluation scripts and results with journal data services or third-party services like GitHub and Zenodo for easier reproducibility.

Implemented Metrics

Metric Index in miseval Function in miseval
Dice Similarity Index "DSC", "Dice", "DiceSimilarityCoefficient" miseval.calc_DSC()
Intersection-Over-Union "IoU", "Jaccard", "IntersectionOverUnion" miseval.calc_IoU()
Sensitivity "SENS", "Sensitivity", "Recall", "TPR", "TruePositiveRate" miseval.calc_Sensitivity()
Specificity "SPEC", "Specificity", "TNR", "TrueNegativeRate" miseval.calc_Specificity()
Precision "PREC", "Precision" miseval.calc_Precision()
Accuracy "ACC", "Accuracy", "RI", "RandIndex" miseval.calc_Accuracy()
Balanced Accuracy "BACC", "BalancedAccuracy" miseval.calc_BalancedAccuracy()
Adjusted Rand Index "ARI", "AdjustedRandIndex" miseval.calc_AdjustedRandIndex()
AUC "AUC", "AUC_trapezoid" miseval.calc_AUC()
Cohen's Kappa "KAP", "Kappa", "CohensKappa" miseval.calc_Kappa()
Hausdorff Distance "HD", "HausdorffDistance" miseval.calc_SimpleHausdorffDistance()
Average Hausdorff Distance "AHD", "AverageHausdorffDistance" miseval.calc_AverageHausdorffDistance()
Volumetric Similarity "VS", "VolumetricSimilarity" miseval.calc_VolumetricSimilarity()
True Positive "TP", "TruePositive" miseval.calc_TruePositive()
False Positive "FP", "FalsePositive" miseval.calc_FalsePositive()
True Negative "TN", "TrueNegative" miseval.calc_TrueNegative()
False Negative "FN", "FalseNegative" miseval.calc_FalseNegative()

How to Use

Example

# load libraries
import numpy as np
from miseval import evaluate

# Get some ground truth / annotated segmentations
np.random.seed(1)
real_bi = np.random.randint(2, size=(64,64))  # binary (2 classes)
real_mc = np.random.randint(5, size=(64,64))  # multi-class (5 classes)
# Get some predicted segmentations
np.random.seed(2)
pred_bi = np.random.randint(2, size=(64,64))  # binary (2 classes)
pred_mc = np.random.randint(5, size=(64,64))  # multi-class (5 classes)

# Run binary evaluation
dice = evaluate(real_bi, pred_bi, metric="DSC")    
  # returns single np.float64 e.g. 0.75

# Run multi-class evaluation
dice_list = evaluate(real_mc, pred_mc, metric="DSC", multi_class=True,
                     n_classes=5)   
  # returns array of np.float64 e.g. [0.9, 0.2, 0.6, 0.0, 0.4]
  # for each class, one score

Core function: Evaluate()

Every metric in miseval can be called via our core function evaluate().

The miseval eavluate function can be run with different metrics as backbone.
You can pass the following options to the metric parameter:

  • String naming one of the metric labels, for example "DSC"
  • Directly passing a metric function, for example calc_DSC_Sets (from dice.py)
  • Passing a custom metric function

List of metrics : See miseval/__init__.py under section "Access Functions to Metric Functions"

The classes in a segmentation mask must be ongoing starting from 0 (integers from 0 to n_classes-1).

A segmentation mask is allowed to have either no channel axis or just 1 (e.g. 512x512x1), which contains the annotation.

Binary mode. n_classes (Integer): Number of classes. By default 2 -> Binary Output: score (Float) or scores (List of Float) The multi_class parameter defines the output of this function. If n_classes > 2, multi_class is automatically True. If multi_class == False & n_classes == 2, only a single score (float) is returned. If multi_class == True, multiple scores as a list are returned (for each class one score). """ def evaluate(truth, pred, metric, multi_class=False, n_classes=2)">
"""
Arguments:
    truth (NumPy Matrix):            Ground Truth segmentation mask.
    pred (NumPy Matrix):             Prediction segmentation mask.
    metric (String or Function):     Metric function. Either a function directly or encoded as String from miseval or a custom function.
    multi_class (Boolean):           Boolean parameter, if segmentation is a binary or multi-class problem. By default False -> Binary mode.
    n_classes (Integer):             Number of classes. By default 2 -> Binary

Output:
    score (Float) or scores (List of Float)

    The multi_class parameter defines the output of this function.
    If n_classes > 2, multi_class is automatically True.
    If multi_class == False & n_classes == 2, only a single score (float) is returned.
    If multi_class == True, multiple scores as a list are returned (for each class one score).
"""
def evaluate(truth, pred, metric, multi_class=False, n_classes=2)

Installation

  • Install miseval from PyPI (recommended):
pip install miseval
  • Alternatively: install miseval from the GitHub source:

First, clone miseval using git:

git clone https://github.com/frankkramer-lab/miseval

Then, go into the miseval folder and run the install command:

cd miseval
python setup.py install

Author

Dominik Müller
Email: [email protected]
IT-Infrastructure for Translational Medical Research
University Augsburg
Bavaria, Germany

How to cite / More information

Dominik Müller, Dennis Hartmann, Philip Meyer, Florian Auer, Iñaki Soto-Rey, Frank Kramer. (2022)
MISeval: a Metric Library for Medical Image Segmentation Evaluation.
arXiv e-print: https://arxiv.org/abs/2201.09395

@inproceedings{misevalMUELLER2022,
  title={MISeval: a Metric Library for Medical Image Segmentation Evaluation},
  author={Dominik Müller, Dennis Hartmann, Philip Meyer, Florian Auer, Iñaki Soto-Rey, Frank Kramer},
  year={2022}
  eprint={2201.09395},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

Thank you for citing our work.

License

This project is licensed under the GNU GENERAL PUBLIC LICENSE Version 3.
See the LICENSE.md file for license rights and limitations.

WatermarkRemoval-WDNet-WACV2021

WatermarkRemoval-WDNet-WACV2021 Thank you for your attention. Citation Please cite the related works in your publications if it helps your research: @

LUYI 63 Dec 05, 2022
A Novel Plug-in Module for Fine-grained Visual Classification

Pytorch implementation for A Novel Plug-in Module for Fine-Grained Visual Classification. fine-grained visual classification task.

ChouPoYung 109 Dec 20, 2022
Official implementation of the ICCV 2021 paper "Joint Inductive and Transductive Learning for Video Object Segmentation"

JOINT This is the official implementation of Joint Inductive and Transductive learning for Video Object Segmentation, to appear in ICCV 2021. @inproce

Yunyao 35 Oct 16, 2022
Cross-modal Retrieval using Transformer Encoder Reasoning Networks (TERN). With use of Metric Learning and FAISS for fast similarity search on GPU

Cross-modal Retrieval using Transformer Encoder Reasoning Networks This project reimplements the idea from "Transformer Reasoning Network for Image-Te

Minh-Khoi Pham 5 Nov 05, 2022
Open-L2O: A Comprehensive and Reproducible Benchmark for Learning to Optimize Algorithms

Open-L2O This repository establishes the first comprehensive benchmark efforts of existing learning to optimize (L2O) approaches on a number of proble

VITA 161 Jan 02, 2023
Code for "Diversity can be Transferred: Output Diversification for White- and Black-box Attacks"

Output Diversified Sampling (ODS) This is the github repository for the NeurIPS 2020 paper "Diversity can be Transferred: Output Diversification for W

50 Dec 11, 2022
Semi-Supervised Semantic Segmentation with Pixel-Level Contrastive Learning from a Class-wise Memory Bank

This repository provides the official code for replicating experiments from the paper: Semi-Supervised Semantic Segmentation with Pixel-Level Contrast

Iñigo Alonso Ruiz 58 Dec 15, 2022
Near-Duplicate Video Retrieval with Deep Metric Learning

Near-Duplicate Video Retrieval with Deep Metric Learning This repository contains the Tensorflow implementation of the paper Near-Duplicate Video Retr

2 Jan 24, 2022
FairMOT - A simple baseline for one-shot multi-object tracking

FairMOT - A simple baseline for one-shot multi-object tracking

Yifu Zhang 3.6k Jan 08, 2023
converts nominal survey data into a numerical value based on a dictionary lookup.

SWAP RATE Converts nominal survey data into a numerical values based on a dictionary lookup. It allows the user to switch nominal scale data from text

Jake Rhodes 1 Jan 18, 2022
PyTorch Implementation of [1611.06440] Pruning Convolutional Neural Networks for Resource Efficient Inference

PyTorch implementation of [1611.06440 Pruning Convolutional Neural Networks for Resource Efficient Inference] This demonstrates pruning a VGG16 based

Jacob Gildenblat 836 Dec 26, 2022
OMNIVORE is a single vision model for many different visual modalities

Omnivore: A Single Model for Many Visual Modalities [paper][website] OMNIVORE is a single vision model for many different visual modalities. It learns

Meta Research 451 Dec 27, 2022
TipToiDog - Tip Toi Dog With Python

TipToiDog Was ist dieses Projekt? Meine 5-jährige Tochter spielt sehr gerne das

1 Feb 07, 2022
Semi-supervised Implicit Scene Completion from Sparse LiDAR

Semi-supervised Implicit Scene Completion from Sparse LiDAR Paper Created by Pengfei Li, Yongliang Shi, Tianyu Liu, Hao Zhao, Guyue Zhou and YA-QIN ZH

114 Nov 30, 2022
(CVPR 2021) Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds

BRNet Introduction This is a release of the code of our paper Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds,

86 Oct 05, 2022
Implementation of gaze tracking and demo

Predicting Customer Demand by Using Gaze Detecting and Object Tracking This project is the integration of gaze detecting and object tracking. Predict

2 Oct 20, 2022
Adversarial Reweighting for Partial Domain Adaptation

Adversarial Reweighting for Partial Domain Adaptation Code for paper "Xiang Gu, Xi Yu, Yan Yang, Jian Sun, Zongben Xu, Adversarial Reweighting for Par

12 Dec 01, 2022
An Unbiased Learning To Rank Algorithms (ULTRA) toolbox

Unbiased Learning to Rank Algorithms (ULTRA) This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiment

back 3 Nov 18, 2022
This repository contains the implementation of Deep Detail Enhancment for Any Garment proposed in Eurographics 2021

Deep-Detail-Enhancement-for-Any-Garment Introduction This repository contains the implementation of Deep Detail Enhancment for Any Garment proposed in

40 Dec 13, 2022
On-device wake word detection powered by deep learning.

Porcupine Made in Vancouver, Canada by Picovoice Porcupine is a highly-accurate and lightweight wake word engine. It enables building always-listening

Picovoice 2.8k Dec 29, 2022