The open-source and free to use Python package miseval was developed to establish a standardized medical image segmentation evaluation procedure

Overview

miseval: a metric library for Medical Image Segmentation EVALuation

shield_python shield_build shield_pypi_version shield_pypi_downloads shield_license

The open-source and free to use Python package miseval was developed to establish a standardized medical image segmentation evaluation procedure. We hope that our this will help improve evaluation quality, reproducibility, and comparability in future studies in the field of medical image segmentation.

Guideline on Evaluation Metrics for Medical Image Segmentation

  1. Use DSC as main metric for validation and performance interpretation.
  2. Use AHD for interpretation on point position sensitivity (contour) if needed.
  3. Avoid any interpretations based on high pixel accuracy scores.
  4. Provide next to DSC also IoU, Sensitivity, and Specificity for method comparability.
  5. Provide sample visualizations, comparing the annotated and predicted segmentation, for visual evaluation as well as to avoid statistical bias.
  6. Avoid cherry-picking high-scoring samples.
  7. Provide histograms or box plots showing the scoring distribution across the dataset.
  8. For multi-class problems, provide metric computations for each class individually.
  9. Avoid confirmation bias through macro-averaging classes which is pushing scores via background class inclusion.
  10. Provide access to evaluation scripts and results with journal data services or third-party services like GitHub and Zenodo for easier reproducibility.

Implemented Metrics

Metric Index in miseval Function in miseval
Dice Similarity Index "DSC", "Dice", "DiceSimilarityCoefficient" miseval.calc_DSC()
Intersection-Over-Union "IoU", "Jaccard", "IntersectionOverUnion" miseval.calc_IoU()
Sensitivity "SENS", "Sensitivity", "Recall", "TPR", "TruePositiveRate" miseval.calc_Sensitivity()
Specificity "SPEC", "Specificity", "TNR", "TrueNegativeRate" miseval.calc_Specificity()
Precision "PREC", "Precision" miseval.calc_Precision()
Accuracy "ACC", "Accuracy", "RI", "RandIndex" miseval.calc_Accuracy()
Balanced Accuracy "BACC", "BalancedAccuracy" miseval.calc_BalancedAccuracy()
Adjusted Rand Index "ARI", "AdjustedRandIndex" miseval.calc_AdjustedRandIndex()
AUC "AUC", "AUC_trapezoid" miseval.calc_AUC()
Cohen's Kappa "KAP", "Kappa", "CohensKappa" miseval.calc_Kappa()
Hausdorff Distance "HD", "HausdorffDistance" miseval.calc_SimpleHausdorffDistance()
Average Hausdorff Distance "AHD", "AverageHausdorffDistance" miseval.calc_AverageHausdorffDistance()
Volumetric Similarity "VS", "VolumetricSimilarity" miseval.calc_VolumetricSimilarity()
True Positive "TP", "TruePositive" miseval.calc_TruePositive()
False Positive "FP", "FalsePositive" miseval.calc_FalsePositive()
True Negative "TN", "TrueNegative" miseval.calc_TrueNegative()
False Negative "FN", "FalseNegative" miseval.calc_FalseNegative()

How to Use

Example

# load libraries
import numpy as np
from miseval import evaluate

# Get some ground truth / annotated segmentations
np.random.seed(1)
real_bi = np.random.randint(2, size=(64,64))  # binary (2 classes)
real_mc = np.random.randint(5, size=(64,64))  # multi-class (5 classes)
# Get some predicted segmentations
np.random.seed(2)
pred_bi = np.random.randint(2, size=(64,64))  # binary (2 classes)
pred_mc = np.random.randint(5, size=(64,64))  # multi-class (5 classes)

# Run binary evaluation
dice = evaluate(real_bi, pred_bi, metric="DSC")    
  # returns single np.float64 e.g. 0.75

# Run multi-class evaluation
dice_list = evaluate(real_mc, pred_mc, metric="DSC", multi_class=True,
                     n_classes=5)   
  # returns array of np.float64 e.g. [0.9, 0.2, 0.6, 0.0, 0.4]
  # for each class, one score

Core function: Evaluate()

Every metric in miseval can be called via our core function evaluate().

The miseval eavluate function can be run with different metrics as backbone.
You can pass the following options to the metric parameter:

  • String naming one of the metric labels, for example "DSC"
  • Directly passing a metric function, for example calc_DSC_Sets (from dice.py)
  • Passing a custom metric function

List of metrics : See miseval/__init__.py under section "Access Functions to Metric Functions"

The classes in a segmentation mask must be ongoing starting from 0 (integers from 0 to n_classes-1).

A segmentation mask is allowed to have either no channel axis or just 1 (e.g. 512x512x1), which contains the annotation.

Binary mode. n_classes (Integer): Number of classes. By default 2 -> Binary Output: score (Float) or scores (List of Float) The multi_class parameter defines the output of this function. If n_classes > 2, multi_class is automatically True. If multi_class == False & n_classes == 2, only a single score (float) is returned. If multi_class == True, multiple scores as a list are returned (for each class one score). """ def evaluate(truth, pred, metric, multi_class=False, n_classes=2)">
"""
Arguments:
    truth (NumPy Matrix):            Ground Truth segmentation mask.
    pred (NumPy Matrix):             Prediction segmentation mask.
    metric (String or Function):     Metric function. Either a function directly or encoded as String from miseval or a custom function.
    multi_class (Boolean):           Boolean parameter, if segmentation is a binary or multi-class problem. By default False -> Binary mode.
    n_classes (Integer):             Number of classes. By default 2 -> Binary

Output:
    score (Float) or scores (List of Float)

    The multi_class parameter defines the output of this function.
    If n_classes > 2, multi_class is automatically True.
    If multi_class == False & n_classes == 2, only a single score (float) is returned.
    If multi_class == True, multiple scores as a list are returned (for each class one score).
"""
def evaluate(truth, pred, metric, multi_class=False, n_classes=2)

Installation

  • Install miseval from PyPI (recommended):
pip install miseval
  • Alternatively: install miseval from the GitHub source:

First, clone miseval using git:

git clone https://github.com/frankkramer-lab/miseval

Then, go into the miseval folder and run the install command:

cd miseval
python setup.py install

Author

Dominik Müller
Email: [email protected]
IT-Infrastructure for Translational Medical Research
University Augsburg
Bavaria, Germany

How to cite / More information

Dominik Müller, Dennis Hartmann, Philip Meyer, Florian Auer, Iñaki Soto-Rey, Frank Kramer. (2022)
MISeval: a Metric Library for Medical Image Segmentation Evaluation.
arXiv e-print: https://arxiv.org/abs/2201.09395

@inproceedings{misevalMUELLER2022,
  title={MISeval: a Metric Library for Medical Image Segmentation Evaluation},
  author={Dominik Müller, Dennis Hartmann, Philip Meyer, Florian Auer, Iñaki Soto-Rey, Frank Kramer},
  year={2022}
  eprint={2201.09395},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

Thank you for citing our work.

License

This project is licensed under the GNU GENERAL PUBLIC LICENSE Version 3.
See the LICENSE.md file for license rights and limitations.

Delving into Localization Errors for Monocular 3D Object Detection, CVPR'2021

Delving into Localization Errors for Monocular 3D Detection By Xinzhu Ma, Yinmin Zhang, Dan Xu, Dongzhan Zhou, Shuai Yi, Haojie Li, Wanli Ouyang. Intr

XINZHU.MA 124 Jan 04, 2023
Official PyTorch implementation of the paper "Graph-based Generative Face Anonymisation with Pose Preservation" in ICIAP 2021

Contents AnonyGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evaluation Acknowledgments Citat

Nicola Dall'Asen 10 May 24, 2022
Collection of machine learning related notebooks to share.

ML_Notebooks Collection of machine learning related notebooks to share. Notebooks GAN_distributed_training.ipynb In this Notebook, TensorFlow's tutori

Sascha Kirch 14 Dec 22, 2022
Lightweight library to build and train neural networks in Theano

Lasagne Lasagne is a lightweight library to build and train neural networks in Theano. Its main features are: Supports feed-forward networks such as C

Lasagne 3.8k Dec 29, 2022
DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative Networks

DECAF (DEbiasing CAusal Fairness) Code Author: Trent Kyono This repository contains the code used for the "DECAF: Generating Fair Synthetic Data Using

van_der_Schaar \LAB 7 Nov 24, 2022
A Blender python script for getting asset browser custom preview images for objects and collections.

asset_snapshot A Blender python script for getting asset browser custom preview images for objects and collections. Installation: Click the code butto

Johnny Matthews 44 Nov 29, 2022
Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark (ICCV 2021)

Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark (ICCV 2021) Kun Wang, Zhenyu Zhang, Zhiqiang Yan, X

kunwang 66 Nov 24, 2022
This repo is about to create the Streamlit application for given ML model.

HR-Attritiion-using-Streamlit This repo is about to create the Streamlit application for given ML model. Problem Statement: Managing peoples at workpl

Pavan Giri 0 Dec 10, 2021
Emotion Recognition from Facial Images

Reconhecimento de Emoções a partir de imagens faciais Este projeto implementa um classificador simples que utiliza técncias de deep learning e transfe

Gabriel 2 Feb 09, 2022
2021 National Underwater Robotics Vision Optics

2021-National-Underwater-Robotics-Vision-Optics 2021年全国水下机器人算法大赛-光学赛道-B榜精度第18名 (Kilian_Di的团队:A榜[email pro

Di Chang 9 Nov 04, 2022
Torchserve server using a YoloV5 model running on docker with GPU and static batch inference to perform production ready inference.

Yolov5 running on TorchServe (GPU compatible) ! This is a dockerfile to run TorchServe for Yolo v5 object detection model. (TorchServe (PyTorch librar

82 Nov 29, 2022
A PyTorch implementation of QANet.

QANet-pytorch NOTICE I'm very busy these months. I'll return to this repo in about 10 days. Introduction An implementation of QANet with PyTorch. Any

H. Z. 343 Nov 03, 2022
[ICCV 2021] Group-aware Contrastive Regression for Action Quality Assessment

CoRe Created by Xumin Yu*, Yongming Rao*, Wenliang Zhao, Jiwen Lu, Jie Zhou This is the PyTorch implementation for ICCV paper Group-aware Contrastive

Xumin Yu 31 Dec 24, 2022
Office source code of paper UniFuse: Unidirectional Fusion for 360$^\circ$ Panorama Depth Estimation

UniFuse (RAL+ICRA2021) Office source code of paper UniFuse: Unidirectional Fusion for 360$^\circ$ Panorama Depth Estimation, arXiv, Demo Preparation I

Alibaba 47 Dec 26, 2022
PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

Yonglong Tian 2.2k Jan 08, 2023
Exploring Simple Siamese Representation Learning

G-SimSiam A PyTorch implementation which refers to repo for the paper Exploring Simple Siamese Representation Learning by Xinlei Chen & Kaiming He Add

zhuyun 1 Dec 19, 2021
Audio-Visual Generalized Few-Shot Learning with Prototype-Based Co-Adaptation

Audio-Visual Generalized Few-Shot Learning with Prototype-Based Co-Adaptation The code repository for "Audio-Visual Generalized Few-Shot Learning with

Kaiaicy 3 Jun 27, 2022
Cognition-aware Cognate Detection

Cognition-aware Cognate Detection The repository which contains our code for our EACL 2021 paper titled, "Cognition-aware Cognate Detection". This wor

Prashant K. Sharma 1 Feb 01, 2022
My personal Home Assistant configuration.

About This is my personal Home Assistant configuration. My guiding princile is to have full local control of all my devices. I intend everything to ru

Chris Turra 13 Jun 07, 2022
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p

Rishikesh (ऋषिकेश) 31 Dec 08, 2022