Semi-Supervised Semantic Segmentation with Pixel-Level Contrastive Learning from a Class-wise Memory Bank

Overview

This repository provides the official code for replicating experiments from the paper: Semi-Supervised Semantic Segmentation with Pixel-Level Contrastive Learning from a Class-wise Memory Bank which as been accepted as an oral paper in the IEEE International Conference on Computer Vision (ICCV) 2021.

This code is based on ClassMix code

Semi-Supervised Semantic Segmentation with Pixel-Level Contrastive Learning from a Class-wise Memory Bank

Prerequisites

  • CUDA/CUDNN
  • Python3
  • Packages found in requirements.txt

Contact

If any question, please either open a github issue or contact via email to: [email protected]

Datasets

Create a folder outsite the code folder:

mkdir ../data/

Cityscapes

mkdir ../data/CityScapes/

Download the dataset from (Link).

Download the files named 'gtFine_trainvaltest.zip', 'leftImg8bit_trainvaltest.zip' and extract in ../data/Cityscapes/

Pascal VOC 2012

mkdir ../data/VOC2012/

Download the dataset from (Link).

Download the file 'training/validation data' under 'Development kit' and extract in ../data/VOC2012/

GTA5

mkdir ../data/GTA5/

Download the dataset from (Link). Unzip all the datasets parts to create an structure like this:

../data/GTA5/images/val/*.png
../data/GTA5/images/train/*.png
../data/GTA5/labels/val/*.png
../data/GTA5/labels/train/*.png

Then, reformat the label images from colored images to training ids. For that, execute this:

python3 utils/translate_labels.py

Experiments

Here there are some examples for replicating the experiments from the paper. Implementation details are specified in the paper (section 4.2) any modification could potentially affect to the final result.

Semi-Supervised

Search here for the desired configuration:

ls ./configs/

For example, for this configuration:

  • Dataset: CityScapes
  • % of labels: 1/30
  • Pretrain: COCO
  • Split: 0
  • Network: Deeplabv2

Execute:

python3 trainSSL.py --config ./configs/configSSL_city_1_30_split0_COCO.json 

Another example, for this configuration:

  • Dataset: CityScapes
  • % of labels: 1/30
  • Pretrain: imagenet
  • Split: 0
  • Network: Deeplabv3+

Execute:

python3 trainSSL.py --config ./configs/configSSL_city_1_30_split0_v3.json 

For example, for this configuration:

  • Dataset: PASCAL VOC
  • % of labels: 1/50
  • Pretrain: COCO
  • Split: 0

Execute:

python3 trainSSL.py --config ./configs/configSSL_pascal_1_50_split0_COCO.json 

For replicating paper experiments, just execute the training of the specific set-up to replicate. We already provide all the configuration files used in the paper. For modifying them and a detail description of all the parameters in the configuration files, check this example:

Configuration File Description

2 for random splits "labeled_samples": 744, # Number of labeled samples to use for supervised learning. The rest will be use without labels. Options: any integer "input_size": "512,512" # Image crop size Options: any integer tuple } }, "seed": 5555, # seed for randomization. Options: any integer "ignore_label": 250, # ignore label value. Options: any integer "utils": { "save_checkpoint_every": 10000, # The model will be saved every this number of iterations. Options: any integer "checkpoint_dir": "../saved/DeepLab", # Path to save the models. Options: any path "val_per_iter": 1000, # The model will be evaluated every this number of iterations. Options: any integer "save_best_model": true # Whether to use teacher model for generating the psuedolabels. The student model wil obe used otherwise. Options: boolean } }">
{
  "model": "DeepLab", # Network architecture. Options: Deeplab
  "version": "2", # Version of the network architecture. Options: {2, 3} for deeplabv2 and deeplabv3+
  "dataset": "cityscapes", # Dataset to use. Options: {"cityscapes", "pascal"}

  "training": { 
    "batch_size": 5, # Batch size to use. Options: any integer
    "num_workers": 3, # Number of cpu workers (threads) to use for laoding the dataset. Options: any integer
    "optimizer": "SGD", # Optimizer to use. Options: {"SGD"}
    "momentum": 0.9, # momentum for SGD optimizer, Options: any float 
    "num_iterations": 100000, # Number of iterations to train. Options: any integer
    "learning_rate": 2e-4, # Learning rate. Options: any float
    "lr_schedule": "Poly", # decay scheduler for the learning rate. Options: {"Poly"}
    "lr_schedule_power": 0.9, # Power value for the Poly scheduler. Options: any float
    "pretraining": "COCO", # Pretraining to use. Options: {"COCO", "imagenet"}
    "weight_decay": 5e-4, # Weight decay. Options: any float
    "use_teacher_train": true, # Whether to use the teacher network to generate pseudolabels. Use student otherwise. Options: boolean. 
    "save_teacher_test": false, # Whether to save the teacher network as the model for testing. Use student otherwise. Options: boolean. 
    
    "data": {
      "split_id_list": 0, # Data splits to use. Options: {0, 1, 2} for pre-computed splits. N >2 for random splits
      "labeled_samples": 744, # Number of labeled samples to use for supervised learning. The rest will be use without labels. Options: any integer
      "input_size": "512,512" # Image crop size  Options: any integer tuple
    }

  },
  "seed": 5555, # seed for randomization. Options: any integer
  "ignore_label": 250, # ignore label value. Options: any integer

  "utils": {
    "save_checkpoint_every": 10000,  # The model will be saved every this number of iterations. Options: any integer
    "checkpoint_dir": "../saved/DeepLab", # Path to save the models. Options: any path
    "val_per_iter": 1000, # The model will be evaluated every this number of iterations. Options: any integer
    "save_best_model": true # Whether to use teacher model for generating the psuedolabels. The student model wil obe used otherwise. Options: boolean
  }
}

Memory Restrictions

All experiments have been run in an NVIDIA Tesla V100. To try to fit the training in a smaller GPU, try to follow this tips:

  • Reduce batch_size from the configuration file
  • Reduce input_size from the configuration file
  • Instead of using trainSSL.py use trainSSL_less_memory.py which optimized labeled and unlabeled data separate steps.

For example, for this configuration:

  • Dataset: PASCAL VOC
  • % of labels: 1/50
  • Pretrain: COCO
  • Split: 0
  • Batch size: 8
  • Crop size: 256x256 Execute:
python3 trainSSL_less_memory.py --config ./configs/configSSL_pascal_1_50_split2_COCO_reduced.json 

Semi-Supervised Domain Adaptation

Experiments for domain adaptation from GTA5 dataset to Cityscapes.

For example, for configuration:

  • % of labels: 1/30
  • Pretrain: Imagenet
  • Split: 0

Execute:

python3 trainSSL_domain_adaptation_targetCity.py --config ./configs/configSSL_city_1_30_split0_imagenet.json 

Evaluation

The training code will evaluate the training model every some specific number of iterations (modify the parameter val_per_iter in the configuration file).

Best evaluated model will be printed at the end of the training.

For every training, several weights will be saved under the path specified in the parameter checkpoint_dir of the configuration file.

One model every save_checkpoint_every (see configuration file) will be saved, plus the best evaluated model.

So, the model has trained we can already know the performance.

For a later evaluation, just execute the next command specifying the model to evaluate in the model-path argument:

python3 evaluateSSL.py --model-path ../saved/DeepLab/best.pth

Citation

If you find this work useful, please consider citing:

@inproceedings{alonso2021semi,
  title={Semi-Supervised Semantic Segmentation with Pixel-Level Contrastive Learning from a Class-wise Memory Bank},
  author={Alonso, I{\~n}igo and Sabater, Alberto and Ferstl, David and Montesano, Luis and Murillo, Ana C},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  year={2021}
}

License

Thi code is released under the Apache 2.0 license. Please see the LICENSE file for more information.

Owner
Iñigo Alonso Ruiz
PhD student (University of Zaragoza)
Iñigo Alonso Ruiz
基于DouZero定制AI实战欢乐斗地主

DouZero_For_Happy_DouDiZhu: 将DouZero用于欢乐斗地主实战 本项目基于DouZero 环境配置请移步项目DouZero 模型默认为WP,更换模型请修改start.py中的模型路径 运行main.py即可 SL (baselines/sl/): 基于人类数据进行深度学习

1.5k Jan 08, 2023
Visualization toolkit for neural networks in PyTorch! Demo -->

FlashTorch A Python visualization toolkit, built with PyTorch, for neural networks in PyTorch. Neural networks are often described as "black box". The

Misa Ogura 692 Dec 29, 2022
GB-CosFace: Rethinking Softmax-based Face Recognition from the Perspective of Open Set Classification

GB-CosFace: Rethinking Softmax-based Face Recognition from the Perspective of Open Set Classification This is the official pytorch implementation of t

Alibaba Cloud 5 Nov 14, 2022
Accelerate Neural Net Training by Progressively Freezing Layers

FreezeOut A simple technique to accelerate neural net training by progressively freezing layers. This repository contains code for the extended abstra

Andy Brock 203 Jun 19, 2022
Gapmm2: gapped alignment using minimap2 (align transcripts to genome)

gapmm2: gapped alignment using minimap2 This tool is a wrapper for minimap2 to r

Jon Palmer 2 Jan 27, 2022
Ensembling Off-the-shelf Models for GAN Training

Data-Efficient GANs with DiffAugment project | paper | datasets | video | slides Generated using only 100 images of Obama, grumpy cats, pandas, the Br

MIT HAN Lab 1.2k Dec 26, 2022
A Closer Look at Invalid Action Masking in Policy Gradient Algorithms

A Closer Look at Invalid Action Masking in Policy Gradient Algorithms This repo contains the source code to reproduce the results in the paper A Close

Costa Huang 73 Dec 24, 2022
ColossalAI-Benchmark - Performance benchmarking with ColossalAI

Benchmark for Tuning Accuracy and Efficiency Overview The benchmark includes our

HPC-AI Tech 31 Oct 07, 2022
Configure SRX interfaces with Scrapli

Configure SRX interfaces with Scrapli Overview This example will show how to configure interfaces on Juniper's SRX firewalls. In addition to the Pytho

Calvin Remsburg 1 Jan 07, 2022
[ICLR 2021] Rank the Episodes: A Simple Approach for Exploration in Procedurally-Generated Environments.

[ICLR 2021] RAPID: A Simple Approach for Exploration in Reinforcement Learning This is the Tensorflow implementation of ICLR 2021 paper Rank the Episo

Daochen Zha 48 Nov 21, 2022
[UNMAINTAINED] Automated machine learning for analytics & production

auto_ml Automated machine learning for production and analytics Installation pip install auto_ml Getting started from auto_ml import Predictor from au

Preston Parry 1.6k Jan 02, 2023
DSTC10 Track 2 - Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations

DSTC10 Track 2 - Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations This repository contains the data, scripts and baseline co

Alexa 51 Dec 17, 2022
Code for DeepCurrents: Learning Implicit Representations of Shapes with Boundaries

DeepCurrents | Webpage | Paper DeepCurrents: Learning Implicit Representations of Shapes with Boundaries David Palmer*, Dmitriy Smirnov*, Stephanie Wa

Dima Smirnov 36 Dec 08, 2022
This is code to fit per-pixel environment map with spherical Gaussian lobes, using LBFGS optimization

Spherical Gaussian Optimization This is code to fit per-pixel environment map with spherical Gaussian lobes, using LBFGS optimization. This code has b

41 Dec 14, 2022
Code release for "Conditional Adversarial Domain Adaptation" (NIPS 2018)

CDAN Code release for "Conditional Adversarial Domain Adaptation" (NIPS 2018) New version: https://github.com/thuml/Transfer-Learning-Library Dataset

THUML @ Tsinghua University 363 Dec 20, 2022
2.86% and 15.85% on CIFAR-10 and CIFAR-100

Shake-Shake regularization This repository contains the code for the paper Shake-Shake regularization. This arxiv paper is an extension of Shake-Shake

Xavier Gastaldi 294 Nov 22, 2022
The reference baseline of final exam for XMU machine learning course

Mini-NICO Baseline The baseline is a reference method for the final exam of machine learning course. Requirements Installation we use /python3.7 /torc

JoaquinChou 3 Dec 29, 2021
Download & Install mods for your favorit game with a few simple clicks

Husko's SteamWorkshop Downloader 🔴 IMPORTANT ❗ 🔴 The Tool is currently being rewritten so updates will be slow and only on the dev branch until it i

Husko 67 Nov 25, 2022
Homepage of paper: Paint Transformer: Feed Forward Neural Painting with Stroke Prediction, ICCV 2021.

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [PaddlePaddle Implementation] Homepage of paper: Paint Transformer: Fee

442 Dec 16, 2022
A tool for calculating distortion parameters in coordination complexes.

OctaDist Octahedral distortion calculator: A tool for calculating distortion parameters in coordination complexes. https://octadist.github.io/ Registe

OctaDist 12 Oct 04, 2022