Semi-Supervised Semantic Segmentation with Pixel-Level Contrastive Learning from a Class-wise Memory Bank

Overview

This repository provides the official code for replicating experiments from the paper: Semi-Supervised Semantic Segmentation with Pixel-Level Contrastive Learning from a Class-wise Memory Bank which as been accepted as an oral paper in the IEEE International Conference on Computer Vision (ICCV) 2021.

This code is based on ClassMix code

Semi-Supervised Semantic Segmentation with Pixel-Level Contrastive Learning from a Class-wise Memory Bank

Prerequisites

  • CUDA/CUDNN
  • Python3
  • Packages found in requirements.txt

Contact

If any question, please either open a github issue or contact via email to: [email protected]

Datasets

Create a folder outsite the code folder:

mkdir ../data/

Cityscapes

mkdir ../data/CityScapes/

Download the dataset from (Link).

Download the files named 'gtFine_trainvaltest.zip', 'leftImg8bit_trainvaltest.zip' and extract in ../data/Cityscapes/

Pascal VOC 2012

mkdir ../data/VOC2012/

Download the dataset from (Link).

Download the file 'training/validation data' under 'Development kit' and extract in ../data/VOC2012/

GTA5

mkdir ../data/GTA5/

Download the dataset from (Link). Unzip all the datasets parts to create an structure like this:

../data/GTA5/images/val/*.png
../data/GTA5/images/train/*.png
../data/GTA5/labels/val/*.png
../data/GTA5/labels/train/*.png

Then, reformat the label images from colored images to training ids. For that, execute this:

python3 utils/translate_labels.py

Experiments

Here there are some examples for replicating the experiments from the paper. Implementation details are specified in the paper (section 4.2) any modification could potentially affect to the final result.

Semi-Supervised

Search here for the desired configuration:

ls ./configs/

For example, for this configuration:

  • Dataset: CityScapes
  • % of labels: 1/30
  • Pretrain: COCO
  • Split: 0
  • Network: Deeplabv2

Execute:

python3 trainSSL.py --config ./configs/configSSL_city_1_30_split0_COCO.json 

Another example, for this configuration:

  • Dataset: CityScapes
  • % of labels: 1/30
  • Pretrain: imagenet
  • Split: 0
  • Network: Deeplabv3+

Execute:

python3 trainSSL.py --config ./configs/configSSL_city_1_30_split0_v3.json 

For example, for this configuration:

  • Dataset: PASCAL VOC
  • % of labels: 1/50
  • Pretrain: COCO
  • Split: 0

Execute:

python3 trainSSL.py --config ./configs/configSSL_pascal_1_50_split0_COCO.json 

For replicating paper experiments, just execute the training of the specific set-up to replicate. We already provide all the configuration files used in the paper. For modifying them and a detail description of all the parameters in the configuration files, check this example:

Configuration File Description

2 for random splits "labeled_samples": 744, # Number of labeled samples to use for supervised learning. The rest will be use without labels. Options: any integer "input_size": "512,512" # Image crop size Options: any integer tuple } }, "seed": 5555, # seed for randomization. Options: any integer "ignore_label": 250, # ignore label value. Options: any integer "utils": { "save_checkpoint_every": 10000, # The model will be saved every this number of iterations. Options: any integer "checkpoint_dir": "../saved/DeepLab", # Path to save the models. Options: any path "val_per_iter": 1000, # The model will be evaluated every this number of iterations. Options: any integer "save_best_model": true # Whether to use teacher model for generating the psuedolabels. The student model wil obe used otherwise. Options: boolean } }">
{
  "model": "DeepLab", # Network architecture. Options: Deeplab
  "version": "2", # Version of the network architecture. Options: {2, 3} for deeplabv2 and deeplabv3+
  "dataset": "cityscapes", # Dataset to use. Options: {"cityscapes", "pascal"}

  "training": { 
    "batch_size": 5, # Batch size to use. Options: any integer
    "num_workers": 3, # Number of cpu workers (threads) to use for laoding the dataset. Options: any integer
    "optimizer": "SGD", # Optimizer to use. Options: {"SGD"}
    "momentum": 0.9, # momentum for SGD optimizer, Options: any float 
    "num_iterations": 100000, # Number of iterations to train. Options: any integer
    "learning_rate": 2e-4, # Learning rate. Options: any float
    "lr_schedule": "Poly", # decay scheduler for the learning rate. Options: {"Poly"}
    "lr_schedule_power": 0.9, # Power value for the Poly scheduler. Options: any float
    "pretraining": "COCO", # Pretraining to use. Options: {"COCO", "imagenet"}
    "weight_decay": 5e-4, # Weight decay. Options: any float
    "use_teacher_train": true, # Whether to use the teacher network to generate pseudolabels. Use student otherwise. Options: boolean. 
    "save_teacher_test": false, # Whether to save the teacher network as the model for testing. Use student otherwise. Options: boolean. 
    
    "data": {
      "split_id_list": 0, # Data splits to use. Options: {0, 1, 2} for pre-computed splits. N >2 for random splits
      "labeled_samples": 744, # Number of labeled samples to use for supervised learning. The rest will be use without labels. Options: any integer
      "input_size": "512,512" # Image crop size  Options: any integer tuple
    }

  },
  "seed": 5555, # seed for randomization. Options: any integer
  "ignore_label": 250, # ignore label value. Options: any integer

  "utils": {
    "save_checkpoint_every": 10000,  # The model will be saved every this number of iterations. Options: any integer
    "checkpoint_dir": "../saved/DeepLab", # Path to save the models. Options: any path
    "val_per_iter": 1000, # The model will be evaluated every this number of iterations. Options: any integer
    "save_best_model": true # Whether to use teacher model for generating the psuedolabels. The student model wil obe used otherwise. Options: boolean
  }
}

Memory Restrictions

All experiments have been run in an NVIDIA Tesla V100. To try to fit the training in a smaller GPU, try to follow this tips:

  • Reduce batch_size from the configuration file
  • Reduce input_size from the configuration file
  • Instead of using trainSSL.py use trainSSL_less_memory.py which optimized labeled and unlabeled data separate steps.

For example, for this configuration:

  • Dataset: PASCAL VOC
  • % of labels: 1/50
  • Pretrain: COCO
  • Split: 0
  • Batch size: 8
  • Crop size: 256x256 Execute:
python3 trainSSL_less_memory.py --config ./configs/configSSL_pascal_1_50_split2_COCO_reduced.json 

Semi-Supervised Domain Adaptation

Experiments for domain adaptation from GTA5 dataset to Cityscapes.

For example, for configuration:

  • % of labels: 1/30
  • Pretrain: Imagenet
  • Split: 0

Execute:

python3 trainSSL_domain_adaptation_targetCity.py --config ./configs/configSSL_city_1_30_split0_imagenet.json 

Evaluation

The training code will evaluate the training model every some specific number of iterations (modify the parameter val_per_iter in the configuration file).

Best evaluated model will be printed at the end of the training.

For every training, several weights will be saved under the path specified in the parameter checkpoint_dir of the configuration file.

One model every save_checkpoint_every (see configuration file) will be saved, plus the best evaluated model.

So, the model has trained we can already know the performance.

For a later evaluation, just execute the next command specifying the model to evaluate in the model-path argument:

python3 evaluateSSL.py --model-path ../saved/DeepLab/best.pth

Citation

If you find this work useful, please consider citing:

@inproceedings{alonso2021semi,
  title={Semi-Supervised Semantic Segmentation with Pixel-Level Contrastive Learning from a Class-wise Memory Bank},
  author={Alonso, I{\~n}igo and Sabater, Alberto and Ferstl, David and Montesano, Luis and Murillo, Ana C},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  year={2021}
}

License

Thi code is released under the Apache 2.0 license. Please see the LICENSE file for more information.

Owner
Iñigo Alonso Ruiz
PhD student (University of Zaragoza)
Iñigo Alonso Ruiz
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Peter Lin 6.5k Jan 04, 2023
Publication describing 3 ML examples at NSLS-II and interfacing into Bluesky

Machine learning enabling high-throughput and remote operations at large-scale user facilities. Overview This repository contains the source code and

BNL 4 Sep 24, 2022
Transformer based SAR image despeckling

Transformer based SAR image despeckling Using the code: The code is stable while using Python 3.6.13, CUDA =10.1 Clone this repository: git clone htt

27 Nov 13, 2022
Seach Losses of our paper 'Loss Function Discovery for Object Detection via Convergence-Simulation Driven Search', accepted by ICLR 2021.

CSE-Autoloss Designing proper loss functions for vision tasks has been a long-standing research direction to advance the capability of existing models

Peidong Liu(刘沛东) 54 Dec 17, 2022
A pytorch implementation of Detectron. Both training from scratch and inferring directly from pretrained Detectron weights are available.

Use this instead: https://github.com/facebookresearch/maskrcnn-benchmark A Pytorch Implementation of Detectron Example output of e2e_mask_rcnn-R-101-F

Roy 2.8k Dec 29, 2022
This is the code of using DQN to play Sekiro .

Update for using DQN to play sekiro 2021.2.2(English Version) This is the code of using DQN to play Sekiro . I am very glad to tell that I have writen

144 Dec 25, 2022
Atomistic Line Graph Neural Network

Table of Contents Introduction Installation Examples Pre-trained models Quick start using colab JARVIS-ALIGNN webapp Peformances on a few datasets Use

National Institute of Standards and Technology 91 Dec 30, 2022
Automatic Idiomatic Expression Detection

IDentifier of Idiomatic Expressions via Semantic Compatibility (DISC) An Idiomatic identifier that detects the presence and span of idiomatic expressi

5 Jun 09, 2022
Spam your friends and famly and when you do your famly will disown you and you will have no friends.

SpamBot9000 Spam your friends and family and when you do your family will disown you and you will have no friends. Terms of Use Disclaimer: Please onl

DJ15 0 Jun 09, 2022
Learning Representational Invariances for Data-Efficient Action Recognition

Learning Representational Invariances for Data-Efficient Action Recognition Official PyTorch implementation for Learning Representational Invariances

Virginia Tech Vision and Learning Lab 27 Nov 22, 2022
Code for Ditto: Building Digital Twins of Articulated Objects from Interaction

Ditto: Building Digital Twins of Articulated Objects from Interaction Zhenyu Jiang, Cheng-Chun Hsu, Yuke Zhu CVPR 2022, Oral Project | arxiv News 2022

UT Robot Perception and Learning Lab 78 Dec 22, 2022
Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery"

SegSwap Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery" [PDF] [Project page] If our project

xshen 41 Dec 10, 2022
An Unpaired Sketch-to-Photo Translation Model

Unpaired-Sketch-to-Photo-Translation We have released our code at https://github.com/rt219/Unsupervised-Sketch-to-Photo-Synthesis This project is the

38 Oct 28, 2022
IDA file loader for UF2, created for the DEFCON 29 hardware badge

UF2 Loader for IDA The DEFCON 29 badge uses the UF2 bootloader, which conveniently allows you to dump and flash the firmware over USB as a mass storag

Kevin Colley 6 Feb 08, 2022
🌎 The Modern Declarative Data Flow Framework for the AI Empowered Generation.

🌎 JSONClasses JSONClasses is a declarative data flow pipeline and data graph framework. Official Website: https://www.jsonclasses.com Official Docume

Fillmula Inc. 53 Dec 09, 2022
Light-SERNet: A lightweight fully convolutional neural network for speech emotion recognition

Light-SERNet This is the Tensorflow 2.x implementation of our paper "Light-SERNet: A lightweight fully convolutional neural network for speech emotion

Arya Aftab 29 Nov 12, 2022
PyTorch implementation of DeepDream algorithm

neural-dream This is a PyTorch implementation of DeepDream. The code is based on neural-style-pt. Here we DeepDream a photograph of the Golden Gate Br

121 Nov 05, 2022
OpenMMLab Text Detection, Recognition and Understanding Toolbox

Introduction English | 简体中文 MMOCR is an open-source toolbox based on PyTorch and mmdetection for text detection, text recognition, and the correspondi

OpenMMLab 3k Jan 07, 2023
Code for the paper Hybrid Spectrogram and Waveform Source Separation

Demucs Music Source Separation This is the 3rd release of Demucs (v3), featuring hybrid source separation. For the waveform only Demucs (v2): Go this

Meta Research 4.8k Jan 04, 2023