Second-Order Neural ODE Optimizer, NeurIPS 2021 spotlight

Related tags

Deep Learningsnopt
Overview

Second-order Neural ODE Optimizer
(NeurIPS 2021 Spotlight) [arXiv]

✔️ faster convergence in wall-clock time | ✔️ O(1) memory cost |
✔️ better test-time performance | ✔️ architecture co-optimization

This repo provides PyTorch code of Second-order Neural ODE Optimizer (SNOpt), a second-order optimizer for training Neural ODEs that retains O(1) memory cost with superior convergence and test-time performance.

SNOpt result

Installation

This code is developed with Python3. PyTorch >=1.7 (we recommend 1.8.1) and torchdiffeq >= 0.2.0 are required.

  1. Install the dependencies with Anaconda and activate the environment snopt with
    conda env create --file requirements.yaml python=3
    conda activate snopt
  2. [Optional] This repo provides a modification (with 15 lines!) of torchdiffeq that allows SNOpt to collect 2nd-order information during adjoint-based training. If you wish to run torchdiffeq on other commit, simply copy-and-paste the folder to this directory then apply the provided snopt_integration.patch.
    cp -r <path_to_your_torchdiffeq_folder> .
    git apply snopt_integration.patch

Run the code

We provide example code for 8 datasets across image classification (main_img_clf.py), time-series prediction (main_time_series.py), and continuous normalizing flow (main_cnf.py). The command lines to generate similar results shown in our paper are detailed in scripts folder. Datasets will be automatically downloaded to data folder at the first call, and all results will be saved to result folder.

bash scripts/run_img_clf.sh     <dataset> # dataset can be {mnist, svhn, cifar10}
bash scripts/run_time_series.sh <dataset> # dataset can be {char-traj, art-wr, spo-ad}
bash scripts/run_cnf.sh         <dataset> # dataset can be {miniboone, gas}

For architecture (specifically integration time) co-optimization, run

bash scripts/run_img_clf.sh cifar10-t1-optimize

Integration with your workflow

snopt can be integrated flawlessly with existing training work flow. Below we provide a handy checklist and pseudo-code to help your integration. For more complex examples, please refer to main_*.py in this repo.

  • Import torchdiffeq that is patched with snopt integration; otherwise simply use torchdiffeq in this repo.
  • Inherit snopt.ODEFuncBase as your vector field; implement the forward pass in F rather than forward.
  • Create Neural ODE with ode layer(s) using snopt.ODEBlock; implement properties odes and ode_mods.
  • Initialize snopt.SNOpt as preconditioner; call train_itr_setup() and step() before standard optim.zero_grad() and optim.step() (see the code below).
  • That's it 🤓 ! Enjoy your second-order training 🚂 🚅 !
import torch
from torchdiffeq import odeint_adjoint as odesolve
from snopt import SNOpt, ODEFuncBase, ODEBlock
from easydict import EasyDict as dict

class ODEFunc(ODEFuncBase):
    def __init__(self, opt):
        super(ODEFunc, self).__init__(opt)
        self.linear = torch.nn.Linear(input_dim, input_dim)

    def F(self, t, z):
        return self.linear(z)

class NeuralODE(torch.nn.Module):
    def __init__(self, ode):
        super(NeuralODE, self).__init__()
        self.ode = ode

    def forward(self, z):
        return self.ode(z)

    @property
    def odes(self): # in case we have multiple odes, collect them in a list
        return [self.ode]

    @property
    def ode_mods(self): # modules of all ode(s)
        return [mod for mod in self.ode.odefunc.modules()]

# Create Neural ODE
opt = dict(
    optimizer='SNOpt',tol=1e-3,ode_solver='dopri5',use_adaptive_t1=False,snopt_step_size=0.01)
odefunc = ODEFunc(opt)
integration_time = torch.tensor([0.0, 1.0]).float()
ode = ODEBlock(opt, odefunc, odesolve, integration_time)
net = NeuralODE(ode)

# Create SNOpt optimizer
precond = SNOpt(net, eps=0.05, update_freq=100)
optim = torch.optim.SGD(net.parameters(), lr=0.001)

# Training loop
for (x,y) in training_loader:
    precond.train_itr_setup() # <--- additional step for precond
    optim.zero_grad()

    loss = loss_function(net(x), y)
    loss.backward()

    # Run SNOpt optimizer
    precond.step()            # <--- additional step for precond
    optim.step()

What the library actually contains

This snopt library implements the following objects for efficient 2nd-order adjoint-based training of Neural ODEs.

  • ODEFuncBase: Defines the vector field (inherits torch.nn.Module) of Neural ODE.
  • CNFFuncBase: Serves the same purposes as ODEFuncBase except for CNF applications.
  • ODEBlock: A Neural-ODE module (torch.nn.Module) that solves the initial value problem (given the vector field, integration time, and a ODE solver) and handles integration time co-optimization with feedback policy.
  • SNOpt: Our primary 2nd-order optimizer (torch.optim.Optimizer), implemented as a "preconditioner" (see example code above). It takes the following arguments.
    • net is the Neural ODE. Note that the entire network (rather than net.parameters()) is required.
    • eps is the the regularization that stabilizes preconditioning. We recommend the value in [0.05, 0.1].
    • update_freq is the frequency to refresh the 2nd-order information. We recommend the value 100~200.
    • alpha decides the running averages of eigenvalues. We recommend fixing the value to 0.75.
    • full_precond decides whether we wish to precondition layers aside from those in Neural ODEs.
  • SNOptAdjointCollector: A helper to collect information from torchdiffeq to construct 2nd-order matrices.
  • IntegrationTimeOptimizer: Our 2nd-order method that co-optimizes the integration time (i.e., t1). This is done by calling t1_train_itr_setup(train_it) and update_t1() together with optim.zero_grad() and optim.step() (see trainer.py).

The options are passed in as opt and contains the following fields (see options.py for full descriptions.)

  • optimizer is the training method. Use "SNOpt" to enable our method.
  • ode_solver specifies the ODE solver (default is "dopri5") with the absolute/relative tolerance tol.
  • For CNF applications, use divergence_type to specify how divergence should be computed.
  • snopt_step_size determines the step sizes SNOpt will sample along the integration to compute 2nd-order matrices. We recommend the value 0.01 for integration time [0,1], which yield around 100 sampled points.
  • For integration time (t1) co-optimization, enable the flag use_adaptive_t1 and setup the following options.
    • adaptive_t1 specifies t1 optimization method. Choices are "baseline" and "feedback"(ours).
    • t1_lr is the learning rate. We recommend the value in [0.05, 0.1].
    • t1_reg is the coefficient of the quadratic penalty imposed on t1. The performance is quite sensitive to this value. We recommend the value in [1e-4, 1e-3].
    • t1_update_freq is the frequency to update t1. We recommend the value 50~100.

Remarks & Citation

The current library only supports adjoint-based training, yet it can be extended to normal odeint method (stay tuned!). The pre-processing of tabular and uea datasets are adopted from ffjord and NeuralCDE, and the eigenvalue-regularized preconditioning is adopted from EKFAC-pytorch.

If you find this library useful, please cite ⬇️ . Contact me ([email protected]) if you have any questions!

@inproceedings{liu2021second,
  title={Second-order Neural ODE Optimizer},
  author={Liu, Guan-Horng and Chen, Tianrong and Theodorou, Evangelos A},
  booktitle={Advances in Neural Information Processing Systems},
  year={2021},
}
Owner
Guan-Horng Liu
CMU RI → Uber ATG → GaTech ML
Guan-Horng Liu
(Python, R, C/C++) Isolation Forest and variations such as SCiForest and EIF, with some additions (outlier detection + similarity + NA imputation)

IsoTree Fast and multi-threaded implementation of Extended Isolation Forest, Fair-Cut Forest, SCiForest (a.k.a. Split-Criterion iForest), and regular

141 Dec 29, 2022
Pytorch implementation of forward and inverse Haar Wavelets 2D

Pytorch implementation of forward and inverse Haar Wavelets 2D

Sergei Belousov 9 Oct 30, 2022
Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences

Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences This repository is an official PyTorch implementation of Neighbor

DIVE Lab, Texas A&M University 8 Jun 12, 2022
基于pytorch构建cyclegan示例

cyclegan-demo 基于Pytorch构建CycleGAN示例 如何运行 准备数据集 将数据集整理成4个文件,分别命名为 trainA, trainB:训练集,A、B代表两类图片 testA, testB:测试集,A、B代表两类图片 例如 D:\CODE\CYCLEGAN-DEMO\DATA

Koorye 3 Oct 18, 2022
Code for visualizing the loss landscape of neural nets

Visualizing the Loss Landscape of Neural Nets This repository contains the PyTorch code for the paper Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer

Tom Goldstein 2.2k Jan 09, 2023
Text and code for the forthcoming second edition of Think Bayes, by Allen Downey.

Think Bayes 2 by Allen B. Downey The HTML version of this book is here. Think Bayes is an introduction to Bayesian statistics using computational meth

Allen Downey 1.5k Jan 08, 2023
Delving into Localization Errors for Monocular 3D Object Detection, CVPR'2021

Delving into Localization Errors for Monocular 3D Detection By Xinzhu Ma, Yinmin Zhang, Dan Xu, Dongzhan Zhou, Shuai Yi, Haojie Li, Wanli Ouyang. Intr

XINZHU.MA 124 Jan 04, 2023
PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.

DECOR-GAN PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement, Zhiqin Chen, Vladimir G. Kim, Matthew Fish

Zhiqin Chen 72 Dec 31, 2022
Official repository for "Restormer: Efficient Transformer for High-Resolution Image Restoration". SOTA for motion deblurring, image deraining, denoising (Gaussian/real data), and defocus deblurring.

Restormer: Efficient Transformer for High-Resolution Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan,

Syed Waqas Zamir 906 Dec 30, 2022
How to use TensorLayer

How to use TensorLayer While research in Deep Learning continues to improve the world, we use a bunch of tricks to implement algorithms with TensorLay

zhangrui 349 Dec 07, 2022
MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift

MemStream Implementation of MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift . Siddharth Bhatia, Arjit Jain, Shivi

Stream-AD 61 Dec 02, 2022
Repositorio oficial del curso IIC2233 Programación Avanzada 🚀✨

IIC2233 - Programación Avanzada Evaluación Las evaluaciones serán efectuadas por medio de actividades prácticas en clases y tareas. Se calculará la no

IIC2233 @ UC 47 Sep 06, 2022
Benchmark spaces - Benchmarks of how well different two dimensional spaces work for clustering algorithms

benchmark_spaces Benchmarks of how well different two dimensional spaces work fo

Bram Cohen 6 May 07, 2022
Exemplo de implementação do padrão circuit breaker em python

fast-circuit-breaker Circuit breakers existem para permitir que uma parte do seu sistema falhe sem destruir todo seu ecossistema de serviços. Michael

James G Silva 17 Nov 10, 2022
Official code for 'Robust Siamese Object Tracking for Unmanned Aerial Manipulator' and offical introduction to UAMT100 benchmark

SiamSA: Robust Siamese Object Tracking for Unmanned Aerial Manipulator Demo video 📹 Our video on Youtube and bilibili demonstrates the evaluation of

Intelligent Vision for Robotics in Complex Environment 12 Dec 18, 2022
DyNet: The Dynamic Neural Network Toolkit

The Dynamic Neural Network Toolkit General Installation C++ Python Getting Started Citing Releases and Contributing General DyNet is a neural network

Chris Dyer's lab @ LTI/CMU 3.3k Jan 06, 2023
Privacy as Code for DSAR Orchestration: Privacy Request automation to fulfill GDPR, CCPA, and LGPD data subject requests.

Meet Fidesops: Privacy as Code for DSAR Orchestration A part of the greater Fides ecosystem. ⚡ Overview Fidesops (fee-dez-äps, combination of the Lati

Ethyca 44 Dec 06, 2022
A library of scripts that interact with the PythonTurtle module to create games, drawings, and more

TurtleLib TurtleLib is a library of scripts that interact with the PythonTurtle module to create games, drawings, and more! Using the Scripts Copy or

1 Jan 15, 2022
PyTorch implementation of the Pose Residual Network (PRN)

Pose Residual Network This repository contains a PyTorch implementation of the Pose Residual Network (PRN) presented in our ECCV 2018 paper: Muhammed

Salih Karagoz 289 Nov 28, 2022
Tensorflow implementation of Swin Transformer model.

Swin Transformer (Tensorflow) Tensorflow reimplementation of Swin Transformer model. Based on Official Pytorch implementation. Requirements tensorflow

167 Jan 08, 2023