"Structure-Augmented Text Representation Learning for Efficient Knowledge Graph Completion"(WWW 2021)

Related tags

Deep LearningStAR_KGC
Overview

STAR_KGC

This repo contains the source code of the paper accepted by WWW'2021. "Structure-Augmented Text Representation Learning for Efficient Knowledge Graph Completion"(WWW 2021).

1. Thanks

The repository is partially based on huggingface transformers, KG-BERT and RotatE.

2. Installing requirement packages

  • conda create -n StAR python=3.6
  • source activate StAR
  • pip install numpy torch tensorboardX tqdm boto3 requests regex sacremoses sentencepiece matplotlib
2.1 Optional package (for mixed float Computation)

3. Dataset

  • WN18RR, FB15k-237, UMLS

    • Train and test set in ./data
    • As validation on original dev set is costly, we validated the model on dev subset during training.
    • The dev subset of WN18RR is provided in ./data/WN18RR called new_dev.dict. Use below commands to get the dev subset for WN18RR (FB15k-237 is similar without the --do_lower_case) used in training process.
     CUDA_VISIBLE_DEVICES=0 \
      python get_new_dev_dict.py \
     	--model_class bert \
     	--weight_decay 0.01 \
     	--learning_rate 5e-5 \
     	--adam_epsilon 1e-6 \
     	--max_grad_norm 0. \
     	--warmup_proportion 0.05 \
     	--do_train \
     	--num_train_epochs 7 \
     	--dataset WN18RR \
     	--max_seq_length 128 \
     	--gradient_accumulation_steps 4 \
     	--train_batch_size 16 \
     	--eval_batch_size 128 \
     	--logging_steps 100 \
     	--eval_steps -1 \
     	--save_steps 2000 \
     	--model_name_or_path bert-base-uncased \
     	--do_lower_case \
     	--output_dir ./result/WN18RR_get_dev \
     	--num_worker 12 \
     	--seed 42 \
    
     CUDA_VISIBLE_DEVICES=0 \
      python get_new_dev_dict.py \
     	--model_class bert \
     	--weight_decay 0.01 \
     	--learning_rate 5e-5 \
     	--adam_epsilon 1e-6 \
     	--max_grad_norm 0. \
     	--warmup_proportion 0.05 \
     	--do_eval \
     	--num_train_epochs 7 \
     	--dataset WN18RR \
     	--max_seq_length 128 \
     	--gradient_accumulation_steps 4 \
     	--train_batch_size 16 \
     	--eval_batch_size 128 \
     	--logging_steps 100 \
     	--eval_steps 1000 \
     	--save_steps 2000 \
     	--model_name_or_path ./result/WN18RR_get_dev \
     	--do_lower_case \
     	--output_dir ./result/WN18RR_get_dev \
     	--num_worker 12 \
     	--seed 42 \
    
  • NELL-One

    • We reformat original NELL-One as the three benchmarks above.
    • Please run the below command to get the reformatted data.
     python reformat_nell_one.py --data_dir path_to_downloaded --output_dir ./data/NELL_standard
    

4. Training and Test (StAR)

Run the below commands for reproducing results in paper. Note, all the eval_steps is set to -1 to train w/o validation and save the last checkpoint, because standard dev is very time-consuming. This can get similar results as in the paper.

4.1 WN18RR

CUDA_VISIBLE_DEVICES=0 \
python run_link_prediction.py \
    --model_class roberta \
    --weight_decay 0.01 \
    --learning_rate 1e-5 \
    --adam_betas 0.9,0.98 \
    --adam_epsilon 1e-6 \
    --max_grad_norm 0. \
    --warmup_proportion 0.05 \
    --do_train --do_eval \
    --do_prediction \
    --num_train_epochs 7 \
    --dataset WN18RR \
    --max_seq_length 128 \
    --gradient_accumulation_steps 4 \
    --train_batch_size 16 \
    --eval_batch_size 128 \
    --logging_steps 100 \
    --eval_steps 4000 \
    --save_steps 2000 \
    --model_name_or_path roberta-large \
    --output_dir ./result/WN18RR_roberta-large \
    --num_worker 12 \
    --seed 42 \
    --cls_method cls \
    --distance_metric euclidean \
CUDA_VISIBLE_DEVICES=2 \
python run_link_prediction.py \
    --model_class bert \
    --weight_decay 0.01 \
    --learning_rate 5e-5 \
    --adam_betas 0.9,0.98 \
    --adam_epsilon 1e-6 \
    --max_grad_norm 0. \
    --warmup_proportion 0.05 \
    --do_train --do_eval \
    --do_prediction \
    --num_train_epochs 7 \
    --dataset WN18RR \
    --max_seq_length 128 \
    --gradient_accumulation_steps 4 \
    --train_batch_size 16 \
    --eval_batch_size 128 \
    --logging_steps 100 \
    --eval_steps 4000 \
    --save_steps 2000 \
    --model_name_or_path bert-base-uncased \
    --do_lower_case \
    --output_dir ./result/WN18RR_bert \
    --num_worker 12 \
    --seed 42 \
    --cls_method cls \
    --distance_metric euclidean \

4.2 FB15k-237

CUDA_VISIBLE_DEVICES=0 \
python run_link_prediction.py \
    --model_class roberta \
    --weight_decay 0.01 \
    --learning_rate 1e-5 \
    --adam_betas 0.9,0.98 \
    --adam_epsilon 1e-6 \
    --max_grad_norm 0. \
    --warmup_proportion 0.05 \
    --do_train --do_eval \
    --do_prediction \
    --num_train_epochs 7. \
    --dataset FB15k-237 \
    --max_seq_length 100 \
    --gradient_accumulation_steps 4 \
    --train_batch_size 16 \
    --eval_batch_size 128 \
    --logging_steps 100 \
    --eval_steps -1 \
    --save_steps 2000 \
    --model_name_or_path roberta-large \
    --output_dir ./result/FB15k-237_roberta-large \
    --num_worker 12 \
    --seed 42 \
    --fp16 \
    --cls_method cls \
    --distance_metric euclidean \

4.3 UMLS

CUDA_VISIBLE_DEVICES=0 \
python run_link_prediction.py \
    --model_class roberta \
    --weight_decay 0.01 \
    --learning_rate 1e-5 \
    --adam_betas 0.9,0.98 \
    --adam_epsilon 1e-6 \
    --max_grad_norm 0. \
    --warmup_proportion 0.05 \
    --do_train --do_eval \
    --do_prediction \
    --num_train_epochs 20 \
    --dataset UMLS \
    --max_seq_length 16 \
    --gradient_accumulation_steps 1 \
    --train_batch_size 16 \
    --eval_batch_size 128 \
    --logging_steps 100 \
    --eval_steps -1 \
    --save_steps 200 \
    --model_name_or_path roberta-large \
    --output_dir ./result/UMLS_model \
    --num_worker 12 \
    --seed 42 \
    --cls_method cls \
    --distance_metric euclidean 

4.4 NELL-One

CUDA_VISIBLE_DEVICES=0 \
python run_link_prediction.py \
    --model_class bert \
    --do_train --do_eval \usepacka--do_prediction \
    --warmup_proportion 0.1 \
    --learning_rate 5e-5 \
    --num_train_epochs 8. \
    --dataset NELL_standard \
    --max_seq_length 32 \
    --gradient_accumulation_steps 1 \
    --train_batch_size 16 \
    --eval_batch_size 128 \
    --logging_steps 100 \
    --eval_steps -1 \
    --save_steps 2000 \
    --model_name_or_path bert-base-uncased \
    --do_lower_case \
    --output_dir ./result/NELL_model \
    --num_worker 12 \
    --seed 42 \
    --fp16 \
    --cls_method cls \
    --distance_metric euclidean 

5. StAR_Self-Adp

5.1 Data preprocessing

  • Get the trained model of RotatE, more details please refer to RotatE.

  • Run the below commands sequentially to get the training dataset of StAR_Self-Adp.

    • Run the run_get_ensemble_data.py in ./StAR
     CUDA_VISIBLE_DEVICES=0 python run_get_ensemble_data.py \
     	--dataset WN18RR \
     	--model_class roberta \
     	--model_name_or_path ./result/WN18RR_roberta-large \
     	--output_dir ./result/WN18RR_roberta-large \
     	--seed 42 \
     	--fp16 
    
    • Run the ./codes/run.py in rotate. (please replace the TRAINED_MODEL_PATH with your own trained model's path)
     CUDA_VISIBLE_DEVICES=3 python ./codes/run.py \
     	--cuda --init ./models/RotatE_wn18rr_0 \
     	--test_batch_size 16 \
     	--star_info_path /home/wangbo/workspace/StAR_KGC-master/StAR/result/WN18RR_roberta-large \
     	--get_scores --get_model_dataset 
    

5.2 Train and Test

  • Run the run.py in ./StAR/ensemble. Note the --mode should be alternate in head and tail, and perform a average operation to get the final results.
  • Note: Please replace YOUR_OUTPUT_DIR, TRAINED_MODEL_PATH and StAR_FILE_PATH in ./StAR/peach/common.py with your own paths to run the command and code.
CUDA_VISIBLE_DEVICES=2 python run.py \
--do_train --do_eval --do_prediction --seen_feature \
--mode tail \
--learning_rate 1e-3 \
--feature_method mix \
--neg_times 5 \
--num_train_epochs 3 \
--hinge_loss_margin 0.6 \
--train_batch_size 32 \
--test_batch_size 64 \
--logging_steps 100 \
--save_steps 2000 \
--eval_steps -1 \
--warmup_proportion 0 \
--output_dir /home/wangbo/workspace/StAR_KGC-master/StAR/result/WN18RR_roberta-large_ensemble  \
--dataset_dir /home/wangbo/workspace/StAR_KGC-master/StAR/result/WN18RR_roberta-large \
--context_score_path /home/wangbo/workspace/StAR_KGC-master/StAR/result/WN18RR_roberta-large \
--translation_score_path /home/wangbo/workspace/StAR_KGC-master/rotate/models/RotatE_wn18rr_0  \
--seed 42 
Owner
Bo Wang
Ph.D. student at the School of Artificial Intelligence, Jilin University.
Bo Wang
Image to Image translation, image generataton, few shot learning

Semi-supervised Learning for Few-shot Image-to-Image Translation [paper] Abstract: In the last few years, unpaired image-to-image translation has witn

yaxingwang 49 Nov 18, 2022
This implementation contains the application of GPlearn's symbolic transformer on a commodity futures sector of the financial market.

GPlearn_finiance_stock_futures_extension This implementation contains the application of GPlearn's symbolic transformer on a commodity futures sector

Chengwei <a href=[email protected]"> 189 Dec 25, 2022
Google AI Open Images - Object Detection Track: Open Solution

Google AI Open Images - Object Detection Track: Open Solution This is an open solution to the Google AI Open Images - Object Detection Track 😃 More c

minerva.ml 46 Jun 22, 2022
Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression

Quantile Regression DQN Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression (https://arx

Arsenii Senya Ashukha 80 Sep 17, 2022
NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem

NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem Liang Xin, Wen Song, Zhiguang

xinliangedu 33 Dec 27, 2022
TensorFlow implementation of Barlow Twins (Barlow Twins: Self-Supervised Learning via Redundancy Reduction)

Barlow-Twins-TF This repository implements Barlow Twins (Barlow Twins: Self-Supervised Learning via Redundancy Reduction) in TensorFlow and demonstrat

Sayak Paul 36 Sep 14, 2022
Official implementation of Few-Shot and Continual Learning with Attentive Independent Mechanisms

Few-Shot and Continual Learning with Attentive Independent Mechanisms This repository is the official implementation of Few-Shot and Continual Learnin

Chikan_Huang 25 Dec 08, 2022
Learning Representations that Support Robust Transfer of Predictors

Transfer Risk Minimization (TRM) Code for Learning Representations that Support Robust Transfer of Predictors Prepare the Datasets Preprocess the Scen

Yilun Xu 15 Dec 07, 2022
TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

YeongHyeon Park 7 Aug 28, 2022
People Interaction Graph

Gihan Jayatilaka*, Jameel Hassan*, Suren Sritharan*, Janith Senananayaka, Harshana Weligampola, et. al., 2021. Holistic Interpretation of Public Scenes Using Computer Vision and Temporal Graphs to Id

University of Peradeniya : COVID Research Group 1 Aug 24, 2022
Training Structured Neural Networks Through Manifold Identification and Variance Reduction

Training Structured Neural Networks Through Manifold Identification and Variance Reduction This repository is a pytorch implementation of the Regulari

0 Dec 23, 2021
Differentiable Optimizers with Perturbations in Pytorch

Differentiable Optimizers with Perturbations in PyTorch This contains a PyTorch implementation of Differentiable Optimizers with Perturbations in Tens

Jake Tuero 54 Jun 22, 2022
This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model inference.

PyTorch Infer Utils This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model infer

Alex Gorodnitskiy 11 Mar 20, 2022
Discovering Interpretable GAN Controls [NeurIPS 2020]

GANSpace: Discovering Interpretable GAN Controls Figure 1: Sequences of image edits performed using control discovered with our method, applied to thr

Erik Härkönen 1.7k Jan 03, 2023
ACL'2021: LM-BFF: Better Few-shot Fine-tuning of Language Models

LM-BFF (Better Few-shot Fine-tuning of Language Models) This is the implementation of the paper Making Pre-trained Language Models Better Few-shot Lea

Princeton Natural Language Processing 607 Jan 07, 2023
StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation.

StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation.

3k Jan 08, 2023
Official implementation of "MetaSDF: Meta-learning Signed Distance Functions"

MetaSDF: Meta-learning Signed Distance Functions Project Page | Paper | Data Vincent Sitzmann*, Eric Ryan Chan*, Richard Tucker, Noah Snavely Gordon W

Vincent Sitzmann 100 Jan 01, 2023
🏅 Top 5% in 제2회 연구개발특구 인공지능 경진대회 AI SPARK 챌린지

AI_SPARK_CHALLENG_Object_Detection 제2회 연구개발특구 인공지능 경진대회 AI SPARK 챌린지 🏅 Top 5% in mAP(0.75) (443명 중 13등, mAP: 0.98116) 대회 설명 Edge 환경에서의 가축 Object Dete

3 Sep 19, 2022
Code for the paper "Zero-shot Natural Language Video Localization" (ICCV2021, Oral).

Zero-shot Natural Language Video Localization (ZSNLVL) by Pseudo-Supervised Video Localization (PSVL) This repository is for Zero-shot Natural Languag

Computer Vision Lab. @ GIST 37 Dec 27, 2022
Vertex AI: Serverless framework for MLOPs (ESP / ENG)

Vertex AI: Serverless framework for MLOPs (ESP / ENG) Español Qué es esto? Este repo contiene un pipeline end to end diseñado usando el SDK de Kubeflo

Hernán Escudero 2 Apr 28, 2022