Anatomy of Matplotlib -- tutorial developed for the SciPy conference

Overview

Introduction

This tutorial is a complete re-imagining of how one should teach users the matplotlib library. Hopefully, this tutorial may serve as inspiration for future restructuring of the matplotlib documentation. Plus, I have some ideas of how to improve this tutorial.

Please fork and contribute back improvements! Feel free to use this tutorial for conferences and other opportunities for training.

The tutorial can be viewed on nbviewer:

Installation

All you need is matplotlib (v1.5 or greater) and jupyter installed. You can use your favorite Python package installer for this:

conda install matplotlib jupyter
git clone https://github.com/matplotlib/AnatomyOfMatplotlib.git
cd AnatomyOfMatplotlib
jupyter notebook

A browser window should appear and you can verify that everything works as expected by clicking on the Test Install.ipynb notebook. There, you will see a "code cell" that you can execute. Run it, and you should see a very simple line plot, indicating that all is well.

Comments
  • Updated the categorical example

    Updated the categorical example

    switched code in example to:

    data = [('apples', 2), ('oranges', 3), ('peaches', 1)]
    fruit, value = zip(*data)
    
    fig, ax = plt.subplots()
    ax.bar(fruit, value, align='center', color='gray')
    plt.show()
    
    opened by story645 7
  • Interactive example demo

    Interactive example demo

    This example is inspired from my severe usage of MATLAB overlay plotting where I plot on a figure and based on its distribution/look I do some operation in backend like moving the image to another directory etc. Hoping this example would become handy for someone like me(who moved from MATLAB plotting)
    Discussion : Twitter Link

    opened by nithinraok 6
  • Fixes #26

    Fixes #26

    • /mpl-data/sample_data/axes_grid folder appears to no longer exists as of matplotlib v2.2.2
    • added /assets folder in repo containing dependent numpy pickle, 'bivariate_normal.npy' file
    • revised load of data in AnatomyOfMatplotlib-Part2-Plotting_Methods_Overview.ipynb to reflect this change
    • tested successfully with matplotlib v2.2.2 and python v3.6.6
    opened by ggodreau 4
  • Add knot to Ugly Tie shape

    Add knot to Ugly Tie shape

    Added geometry to the Ugly Tie polygon to look like a knot.

    It remains a single polygon so color will affect both visible parts.

    At large zooms/resolutions a connection between the right side of the knot and the main tie is visible because the points on right side of the knot are not perfectly in-line with the upper right corner of the tie where the two larger parts of the shape are visible. If this becomes an issue, doing some math to find evenly dividing, aligned points near the current values would make the connecting section of the polygon zero width.

    opened by TheAtomicOption 3
  • New plotting overview

    New plotting overview

    I realize this is a bit last-minute and a big change, but I really feel like we were missing a good overview of the various plotting methods.

    I've added a new Part 2 (and renamed the other sections) to cover this: http://nbviewer.ipython.org/url/geology.beer/scipy2015/tutorial/AnatomyOfMatplotlib-Part2-Plotting_Methods_Overview.ipynb

    I've tried to make a lot of nice summary images of the most commonly-used plotting methods. The "full" gallery can be very overwhelming, so it's useful to give people a condensed version. Also, these

    80% of the new Part 2 is just quickly looking those images so that people are vaguely aware of what's out there. The code to generate them is also there to serve as an example.

    The new section only goes over bar, fill_between and imshow in more detail. It's not anywhere near as long as it looks at first glance.

    opened by joferkington 3
  • Convert to new ipynb format

    Convert to new ipynb format

    The ipython notebook format has changed slightly in recent versions. Notebooks in the old format are automatically converted when they're opened with a more recent version, but I wanted to go ahead and commit the new format versions.

    Otherwise the diffs will be very difficult to read.

    I also added a .gitignore to ignore the hidden checkpoint folder IPython adds, if ipython notebook is run from the source directory.

    opened by joferkington 3
  • imshow color bar

    imshow color bar

    Hello matplotlib developers,

    I was watching the Youtube recording: Anatomy of Matplotlib from SciPy 2018, and I have a question about AnatomyOfMatplotlib/solutions/2.2-vmin_vmax_imshow_and_colorbars.py

    From line 17 to 18...

    for ax, data in zip(axes, [data1, data2, data3]): im = ax.imshow(data, vmin=0, vmax=3, interpolation='nearest')

    I am assuming data3 has bigger values, followed by data2 and data2, since data3 is multiplied by 3. Suppose if I switch the order of the list in line 17 from:

    for ax, data in zip(axes, [data1, data2, data3]):

    to:

    for ax, data in zip(axes, [data3, data2, data1]):

    So, the last im object would data1 which has a 10 by 10 array with max value of 1. Since we are giving the last im object to make the colorbar, would that mean the range color bar spans from 0 to around 1? Or does matplotlib somehow manage to look at all three plotted imshows and perceive that the maximum value amongst the three imshows is around 3?

    Thank you!

    opened by ZarulHanifah 2
  • Chapter 2 subsec colorbars example data missing

    Chapter 2 subsec colorbars example data missing

    Seems like the example data used in chapter 2 at the colorbar example is no longer supported as of py 3.1. bivariate_normal.npy is not in any folder and has apparantly been discontinued.

    opened by Nafalem231 2
  • Overhaul of Part 1

    Overhaul of Part 1

    First off, IPython/Jupyter has recently had a .ipynb format change, so these diffs are rather messy. If I'd thought about it more, I would have made that a separate commit, but I didn't realize until edits were underway.

    At any rate, I've changed Part1 rather significantly. I pruned some things out and expanded others. I'm intending to add another section detailing basic categories of plotting functions, so I removed several of the references to those in this section.

    Even after these changes, Part1 is still rather long. I might split it (particularly the part after the second exercise and before the third) into another section.

    At any rate hopefully you can see where I'm going with this. Thanks, and looking forward to teaching here in a few weeks!

    opened by joferkington 1
  • from __future__ import print_function so print works same for Python 2&3

    from __future__ import print_function so print works same for Python 2&3

    Just finished going through the notebooks with Python3 and everything worked fine except for having to manually modify all the print statements. Figured it could be made to seamlessly work with both Python 2 and 3 by simply using a from __future__ import print_function.

    opened by jarthurgross 1
  • Fix some typos, and cleared cell outputs.

    Fix some typos, and cleared cell outputs.

    Also threw out some extraneous sentences. Keep things simple and straight-forward. Resist the temptation to reveal everything at once. I will leave this up for a little bit for comment and then merge later today.

    opened by WeatherGod 0
  • Remove backend and add resolve nteract: matplotlib.use('nbagg')

    Remove backend and add resolve nteract: matplotlib.use('nbagg')

    Backend is no longer necessary IMO. Using a backend results in the following error on Jupyter.

    Javascript Error: IPython is not defined
    

    Also adding %matplotlib inline before importing matplotlib resolves the displaying of graphs.

    Should I fix them in the notebooks and send a PR?

    Thanks.

    opened by hasibzunair 8
  • make examples progressive

    make examples progressive

    In part 2, the example is too much to do at once. Rather, it would make sense to build up that example as more is taught. Perhaps a new feature for IPython notebooks would be useful (floating cells?)

    opened by WeatherGod 2
Releases(v2.0)
  • v2.0(Jul 25, 2014)

Owner
Matplotlib Developers
Matplotlib Developers
Off-policy continuous control in PyTorch, with RDPG, RTD3 & RSAC

arXiv technical report soon available. we are updating the readme to be as comprehensive as possible Please ask any questions in Issues, thanks. Intro

Zhihan 31 Dec 30, 2022
Implementation of SwinTransformerV2 in TensorFlow.

SwinTransformerV2-TensorFlow A TensorFlow implementation of SwinTransformerV2 by Microsoft Research Asia, based on their official implementation of Sw

Phan Nguyen 2 May 30, 2022
GitHub repository for the ICLR Computational Geometry & Topology Challenge 2021

ICLR Computational Geometry & Topology Challenge 2022 Welcome to the ICLR 2022 Computational Geometry & Topology challenge 2022 --- by the ICLR 2022 W

42 Dec 13, 2022
A Pytorch implementation of "Splitter: Learning Node Representations that Capture Multiple Social Contexts" (WWW 2019).

Splitter ⠀⠀ A PyTorch implementation of Splitter: Learning Node Representations that Capture Multiple Social Contexts (WWW 2019). Abstract Recent inte

Benedek Rozemberczki 201 Nov 09, 2022
Disturbing Target Values for Neural Network regularization: attacking the loss layer to prevent overfitting

Disturbing Target Values for Neural Network regularization: attacking the loss layer to prevent overfitting 1. Classification Task PyTorch implementat

Yongho Kim 0 Apr 24, 2022
Deep learning models for change detection of remote sensing images

Change Detection Models (Remote Sensing) Python library with Neural Networks for Change Detection based on PyTorch. ⚡ ⚡ ⚡ I am trying to build this pr

Kaiyu Li 176 Dec 24, 2022
[NeurIPS-2021] Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data

MosaicKD Code for NeurIPS-21 paper "Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data" 1. Motivation Natural images share common l

ZJU-VIPA 37 Nov 10, 2022
Source code of SIGIR2021 Paper 'One Chatbot Per Person: Creating Personalized Chatbots based on Implicit Profiles'

DHAP Source code of SIGIR2021 Long Paper: One Chatbot Per Person: Creating Personalized Chatbots based on Implicit User Profiles . Preinstallation Fir

ZYMa 32 Dec 06, 2022
Supplementary code for SIGGRAPH 2021 paper: Discovering Diverse Athletic Jumping Strategies

SIGGRAPH 2021: Discovering Diverse Athletic Jumping Strategies project page paper demo video Prerequisites Important Notes We suspect there are bugs i

54 Dec 06, 2022
deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

63 Oct 17, 2022
Language-Driven Semantic Segmentation

Language-driven Semantic Segmentation (LSeg) The repo contains official PyTorch Implementation of paper Language-driven Semantic Segmentation. Authors

Intelligent Systems Lab Org 416 Jan 03, 2023
Recursive Bayesian Networks

Recursive Bayesian Networks This repository contains the code to reproduce the results from the NeurIPS 2021 paper Lieck R, Rohrmeier M (2021) Recursi

Robert Lieck 11 Oct 18, 2022
Python implementation of "Elliptic Fourier Features of a Closed Contour"

PyEFD An Python/NumPy implementation of a method for approximating a contour with a Fourier series, as described in [1]. Installation pip install pyef

Henrik Blidh 71 Dec 09, 2022
[ICLR 2021 Spotlight Oral] "Undistillable: Making A Nasty Teacher That CANNOT teach students", Haoyu Ma, Tianlong Chen, Ting-Kuei Hu, Chenyu You, Xiaohui Xie, Zhangyang Wang

Undistillable: Making A Nasty Teacher That CANNOT teach students "Undistillable: Making A Nasty Teacher That CANNOT teach students" Haoyu Ma, Tianlong

VITA 71 Dec 28, 2022
Py4fi2nd - Jupyter Notebooks and code for Python for Finance (2nd ed., O'Reilly) by Yves Hilpisch.

Python for Finance (2nd ed., O'Reilly) This repository provides all Python codes and Jupyter Notebooks of the book Python for Finance -- Mastering Dat

Yves Hilpisch 1k Jan 05, 2023
The Python ensemble sampling toolkit for affine-invariant MCMC

emcee The Python ensemble sampling toolkit for affine-invariant MCMC emcee is a stable, well tested Python implementation of the affine-invariant ense

Dan Foreman-Mackey 1.3k Dec 31, 2022
MixText: Linguistically-Informed Interpolation of Hidden Space for Semi-Supervised Text Classification

MixText This repo contains codes for the following paper: Jiaao Chen, Zichao Yang, Diyi Yang: MixText: Linguistically-Informed Interpolation of Hidden

GT-SALT 309 Dec 12, 2022
An Straight Dilated Network with Wavelet for image Deblurring

SDWNet: A Straight Dilated Network with Wavelet Transformation for Image Deblurring(offical) 1. Introduction This repo is not only used for our paper(

FlyEgle 41 Jan 04, 2023
Block-wisely Supervised Neural Architecture Search with Knowledge Distillation (CVPR 2020)

DNA This repository provides the code of our paper: Blockwisely Supervised Neural Architecture Search with Knowledge Distillation. Illustration of DNA

Changlin Li 215 Dec 19, 2022
Using image super resolution models with vapoursynth and speeding them up with TensorRT

vs-RealEsrganAnime-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Also a docker image since

4 Aug 23, 2022