Anatomy of Matplotlib -- tutorial developed for the SciPy conference

Overview

Introduction

This tutorial is a complete re-imagining of how one should teach users the matplotlib library. Hopefully, this tutorial may serve as inspiration for future restructuring of the matplotlib documentation. Plus, I have some ideas of how to improve this tutorial.

Please fork and contribute back improvements! Feel free to use this tutorial for conferences and other opportunities for training.

The tutorial can be viewed on nbviewer:

Installation

All you need is matplotlib (v1.5 or greater) and jupyter installed. You can use your favorite Python package installer for this:

conda install matplotlib jupyter
git clone https://github.com/matplotlib/AnatomyOfMatplotlib.git
cd AnatomyOfMatplotlib
jupyter notebook

A browser window should appear and you can verify that everything works as expected by clicking on the Test Install.ipynb notebook. There, you will see a "code cell" that you can execute. Run it, and you should see a very simple line plot, indicating that all is well.

Comments
  • Updated the categorical example

    Updated the categorical example

    switched code in example to:

    data = [('apples', 2), ('oranges', 3), ('peaches', 1)]
    fruit, value = zip(*data)
    
    fig, ax = plt.subplots()
    ax.bar(fruit, value, align='center', color='gray')
    plt.show()
    
    opened by story645 7
  • Interactive example demo

    Interactive example demo

    This example is inspired from my severe usage of MATLAB overlay plotting where I plot on a figure and based on its distribution/look I do some operation in backend like moving the image to another directory etc. Hoping this example would become handy for someone like me(who moved from MATLAB plotting)
    Discussion : Twitter Link

    opened by nithinraok 6
  • Fixes #26

    Fixes #26

    • /mpl-data/sample_data/axes_grid folder appears to no longer exists as of matplotlib v2.2.2
    • added /assets folder in repo containing dependent numpy pickle, 'bivariate_normal.npy' file
    • revised load of data in AnatomyOfMatplotlib-Part2-Plotting_Methods_Overview.ipynb to reflect this change
    • tested successfully with matplotlib v2.2.2 and python v3.6.6
    opened by ggodreau 4
  • Add knot to Ugly Tie shape

    Add knot to Ugly Tie shape

    Added geometry to the Ugly Tie polygon to look like a knot.

    It remains a single polygon so color will affect both visible parts.

    At large zooms/resolutions a connection between the right side of the knot and the main tie is visible because the points on right side of the knot are not perfectly in-line with the upper right corner of the tie where the two larger parts of the shape are visible. If this becomes an issue, doing some math to find evenly dividing, aligned points near the current values would make the connecting section of the polygon zero width.

    opened by TheAtomicOption 3
  • New plotting overview

    New plotting overview

    I realize this is a bit last-minute and a big change, but I really feel like we were missing a good overview of the various plotting methods.

    I've added a new Part 2 (and renamed the other sections) to cover this: http://nbviewer.ipython.org/url/geology.beer/scipy2015/tutorial/AnatomyOfMatplotlib-Part2-Plotting_Methods_Overview.ipynb

    I've tried to make a lot of nice summary images of the most commonly-used plotting methods. The "full" gallery can be very overwhelming, so it's useful to give people a condensed version. Also, these

    80% of the new Part 2 is just quickly looking those images so that people are vaguely aware of what's out there. The code to generate them is also there to serve as an example.

    The new section only goes over bar, fill_between and imshow in more detail. It's not anywhere near as long as it looks at first glance.

    opened by joferkington 3
  • Convert to new ipynb format

    Convert to new ipynb format

    The ipython notebook format has changed slightly in recent versions. Notebooks in the old format are automatically converted when they're opened with a more recent version, but I wanted to go ahead and commit the new format versions.

    Otherwise the diffs will be very difficult to read.

    I also added a .gitignore to ignore the hidden checkpoint folder IPython adds, if ipython notebook is run from the source directory.

    opened by joferkington 3
  • imshow color bar

    imshow color bar

    Hello matplotlib developers,

    I was watching the Youtube recording: Anatomy of Matplotlib from SciPy 2018, and I have a question about AnatomyOfMatplotlib/solutions/2.2-vmin_vmax_imshow_and_colorbars.py

    From line 17 to 18...

    for ax, data in zip(axes, [data1, data2, data3]): im = ax.imshow(data, vmin=0, vmax=3, interpolation='nearest')

    I am assuming data3 has bigger values, followed by data2 and data2, since data3 is multiplied by 3. Suppose if I switch the order of the list in line 17 from:

    for ax, data in zip(axes, [data1, data2, data3]):

    to:

    for ax, data in zip(axes, [data3, data2, data1]):

    So, the last im object would data1 which has a 10 by 10 array with max value of 1. Since we are giving the last im object to make the colorbar, would that mean the range color bar spans from 0 to around 1? Or does matplotlib somehow manage to look at all three plotted imshows and perceive that the maximum value amongst the three imshows is around 3?

    Thank you!

    opened by ZarulHanifah 2
  • Chapter 2 subsec colorbars example data missing

    Chapter 2 subsec colorbars example data missing

    Seems like the example data used in chapter 2 at the colorbar example is no longer supported as of py 3.1. bivariate_normal.npy is not in any folder and has apparantly been discontinued.

    opened by Nafalem231 2
  • Overhaul of Part 1

    Overhaul of Part 1

    First off, IPython/Jupyter has recently had a .ipynb format change, so these diffs are rather messy. If I'd thought about it more, I would have made that a separate commit, but I didn't realize until edits were underway.

    At any rate, I've changed Part1 rather significantly. I pruned some things out and expanded others. I'm intending to add another section detailing basic categories of plotting functions, so I removed several of the references to those in this section.

    Even after these changes, Part1 is still rather long. I might split it (particularly the part after the second exercise and before the third) into another section.

    At any rate hopefully you can see where I'm going with this. Thanks, and looking forward to teaching here in a few weeks!

    opened by joferkington 1
  • from __future__ import print_function so print works same for Python 2&3

    from __future__ import print_function so print works same for Python 2&3

    Just finished going through the notebooks with Python3 and everything worked fine except for having to manually modify all the print statements. Figured it could be made to seamlessly work with both Python 2 and 3 by simply using a from __future__ import print_function.

    opened by jarthurgross 1
  • Fix some typos, and cleared cell outputs.

    Fix some typos, and cleared cell outputs.

    Also threw out some extraneous sentences. Keep things simple and straight-forward. Resist the temptation to reveal everything at once. I will leave this up for a little bit for comment and then merge later today.

    opened by WeatherGod 0
  • Remove backend and add resolve nteract: matplotlib.use('nbagg')

    Remove backend and add resolve nteract: matplotlib.use('nbagg')

    Backend is no longer necessary IMO. Using a backend results in the following error on Jupyter.

    Javascript Error: IPython is not defined
    

    Also adding %matplotlib inline before importing matplotlib resolves the displaying of graphs.

    Should I fix them in the notebooks and send a PR?

    Thanks.

    opened by hasibzunair 8
  • make examples progressive

    make examples progressive

    In part 2, the example is too much to do at once. Rather, it would make sense to build up that example as more is taught. Perhaps a new feature for IPython notebooks would be useful (floating cells?)

    opened by WeatherGod 2
Releases(v2.0)
  • v2.0(Jul 25, 2014)

Owner
Matplotlib Developers
Matplotlib Developers
EMNLP 2020 - Summarizing Text on Any Aspects

Summarizing Text on Any Aspects This repo contains preliminary code of the following paper: Summarizing Text on Any Aspects: A Knowledge-Informed Weak

Bowen Tan 35 Nov 14, 2022
[cvpr22] Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation

PS-MT [cvpr22] Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation by Yuyuan Liu, Yu Tian, Yuanhong Chen, Fengbei Liu, Vasile

Yuyuan Liu 132 Jan 03, 2023
Code for Talk-to-Edit (ICCV2021). Paper: Talk-to-Edit: Fine-Grained Facial Editing via Dialog.

Talk-to-Edit (ICCV2021) This repository contains the implementation of the following paper: Talk-to-Edit: Fine-Grained Facial Editing via Dialog Yumin

Yuming Jiang 221 Jan 07, 2023
An unofficial styleguide and best practices summary for PyTorch

A PyTorch Tools, best practices & Styleguide This is not an official style guide for PyTorch. This document summarizes best practices from more than a

IgorSusmelj 1.5k Jan 05, 2023
AirCode: A Robust Object Encoding Method

AirCode This repo contains source codes for the arXiv preprint "AirCode: A Robust Object Encoding Method" Demo Object matching comparison when the obj

Chen Wang 30 Dec 09, 2022
Relative Human dataset, CVPR 2022

Relative Human (RH) contains multi-person in-the-wild RGB images with rich human annotations, including: Depth layers (DLs): relative depth relationsh

Yu Sun 112 Dec 02, 2022
Processed, version controlled history of Minecraft's generated data and assets

mcmeta Processed, version controlled history of Minecraft's generated data and assets Repository structure Each of the following branches has a commit

Misode 75 Dec 28, 2022
A knowledge base construction engine for richly formatted data

Fonduer is a Python package and framework for building knowledge base construction (KBC) applications from richly formatted data. Note that Fonduer is

HazyResearch 386 Dec 05, 2022
RepVGG: Making VGG-style ConvNets Great Again

RepVGG: Making VGG-style ConvNets Great Again (PyTorch) This is a super simple ConvNet architecture that achieves over 80% top-1 accuracy on ImageNet

2.8k Jan 04, 2023
A heterogeneous entity-augmented academic language model based on Open Academic Graph (OAG)

Library | Paper | Slack We released two versions of OAG-BERT in CogDL package. OAG-BERT is a heterogeneous entity-augmented academic language model wh

THUDM 58 Dec 17, 2022
ONNX-PackNet-SfM: Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Ibai Gorordo 14 Dec 09, 2022
Fast Axiomatic Attribution for Neural Networks (NeurIPS*2021)

Fast Axiomatic Attribution for Neural Networks This is the official repository accompanying the NeurIPS 2021 paper: R. Hesse, S. Schaub-Meyer, and S.

Visual Inference Lab @TU Darmstadt 11 Nov 21, 2022
Deep learning models for change detection of remote sensing images

Change Detection Models (Remote Sensing) Python library with Neural Networks for Change Detection based on PyTorch. ⚡ ⚡ ⚡ I am trying to build this pr

Kaiyu Li 176 Dec 24, 2022
FastyAPI is a Stack boilerplate optimised for heavy loads.

FastyAPI A FastAPI based Stack boilerplate for heavy loads. Explore the docs » View Demo · Report Bug · Request Feature Table of Contents About The Pr

Ali Chaayb 47 Dec 27, 2022
Code for reproducing key results in the paper "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets"

Status: Archive (code is provided as-is, no updates expected) InfoGAN Code for reproducing key results in the paper InfoGAN: Interpretable Representat

OpenAI 1k Dec 19, 2022
EDCNN: Edge enhancement-based Densely Connected Network with Compound Loss for Low-Dose CT Denoising

EDCNN: Edge enhancement-based Densely Connected Network with Compound Loss for Low-Dose CT Denoising By Tengfei Liang, Yi Jin, Yidong Li, Tao Wang. Th

workingcoder 115 Jan 05, 2023
Contains source code for the winning solution of the xView3 challenge

Winning Solution for xView3 Challenge This repository contains source code and pretrained models for my (Eugene Khvedchenya) solution to xView 3 Chall

Eugene Khvedchenya 51 Dec 30, 2022
This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees

Mega-NeRF This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees used by the Mega-NeRF-Dynamic viewe

cmusatyalab 260 Dec 28, 2022
For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training.

LongScientificFormer For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training. Some code

Athar Sefid 6 Nov 02, 2022
Aiming at the common training datsets split, spectrum preprocessing, wavelength select and calibration models algorithm involved in the spectral analysis process

Aiming at the common training datsets split, spectrum preprocessing, wavelength select and calibration models algorithm involved in the spectral analysis process, a complete algorithm library is esta

Fu Pengyou 50 Jan 07, 2023