[NeurIPS 2021] ORL: Unsupervised Object-Level Representation Learning from Scene Images

Overview

Unsupervised Object-Level Representation Learning from Scene Images

This repository contains the official PyTorch implementation of the ORL algorithm for self-supervised representation learning.

Unsupervised Object-Level Representation Learning from Scene Images,
Jiahao Xie, Xiaohang Zhan, Ziwei Liu, Yew Soon Ong, Chen Change Loy
In NeurIPS 2021
[Paper][Project Page][Bibtex]

highlights

Updates

  • [12/2021] Code and pre-trained models of ORL are released.

Installation

Please refer to INSTALL.md for installation and dataset preparation.

Models

Pre-trained models can be downloaded from Google Drive. Please see our paper for transfer learning results on different benchmarks.

Usage

Stage 1: Image-level pre-training

You need to pre-train an image-level contrastive learning model in this stage. Take BYOL as an example:

bash tools/dist_train.sh configs/selfsup/orl/coco/stage1/r50_bs512_ep800.py 8

This stage can be freely replaced with other image-level contrastive learning models.

Stage 2: Correspondence discovery

  • KNN image retrieval

First, extract all features in the training set using the pre-trained model weights in Stage 1:

bash tools/dist_train.sh configs/selfsup/orl/coco/stage1/r50_bs512_ep800_extract_feature.py 8 --resume_from work_dirs/selfsup/orl/coco/stage1/r50_bs512_ep800/epoch_800.pth

Second, retrieve KNN for each image using tools/coco_knn_image_retrieval.ipynb. The corresponding KNN image ids will be saved as a json file train2017_knn_instance.json under data/coco/meta/.

  • RoI generation

Apply selective search to generate region proposals for all images in the training set:

bash tools/dist_selective_search_single_gpu.sh configs/selfsup/orl/coco/stage2/selective_search_train2017.py data/coco/meta/train2017_selective_search_proposal.json

The script and config only support single-image single-gpu inference since different images can have different number of generated region proposals by selective search, which cannot be gathered if distributed in multiple gpus. You can also directly download here under data/coco/meta/ if you want to skip this step.

  • RoI pair retrieval

Retrieve top-ranked RoI pairs:

bash tools/dist_generate_correspondence_single_gpu.sh configs/selfsup/orl/coco/stage2/r50_bs512_ep800_generate_all_correspondence.py work_dirs/selfsup/orl/coco/stage1/r50_bs512_ep800/epoch_800.pth data/coco/meta/train2017_knn_instance.json data/coco/meta/train2017_knn_instance_correspondence.json

The script and config also only support single-image single-gpu inference since different image pairs can have different number of generated inter-RoI pairs, which cannot be gathered if distributed in multiple gpus. A workaround to speed up the retrieval process is to split the whole dataset into several parts and process each part on each gpu in parallel. We provide an example of these configs (10 parts in total) in configs/selfsup/orl/coco/stage2/r50_bs512_ep800_generate_partial_correspondence/. After generating each part, you can use tools/merge_partial_correspondence_files.py to merge them together and save the final correspondence json file train2017_knn_instance_correspondence.json under data/coco/meta/.

Stage 3: Object-level pre-training

After obtaining the correspondence file in Stage 2, you can then perform object-level pre-training:

bash tools/dist_train.sh configs/selfsup/orl/coco/stage3/r50_bs512_ep800.py 8

Transferring to downstream tasks

Please refer to GETTING_STARTED.md for transferring to various downstream tasks.

Acknowledgement

We would like to thank the OpenSelfSup for its open-source project and PyContrast for its detection evaluation configs.

Citation

Please consider citing our paper in your publications if the project helps your research. BibTeX reference is as follows:

@inproceedings{xie2021unsupervised,
  title={Unsupervised Object-Level Representation Learning from Scene Images},
  author={Xie, Jiahao and Zhan, Xiaohang and Liu, Ziwei and Ong, Yew Soon and Loy, Chen Change},
  booktitle={NeurIPS},
  year={2021}
}
Owner
Jiahao Xie
Jiahao Xie
NeRF Meta-Learning with PyTorch

NeRF Meta Learning With PyTorch nerf-meta is a PyTorch re-implementation of NeRF experiments from the paper "Learned Initializations for Optimizing Co

Sanowar Raihan 78 Dec 18, 2022
A Loss Function for Generative Neural Networks Based on Watson’s Perceptual Model

This repository contains the similarity metrics designed and evaluated in the paper, and instructions and code to re-run the experiments. Implementation in the deep-learning framework PyTorch

Steffen 86 Dec 27, 2022
SymPy-powered, Wolfram|Alpha-like answer engine totally in your browser, without backend computation

SymPy Beta SymPy Beta is a fork of SymPy Gamma. The purpose of this project is to run a SymPy-powered, Wolfram|Alpha-like answer engine totally in you

Liumeo 25 Dec 21, 2022
PyTorch implementation for "HyperSPNs: Compact and Expressive Probabilistic Circuits", NeurIPS 2021

HyperSPN This repository contains code for the paper: HyperSPNs: Compact and Expressive Probabilistic Circuits "HyperSPNs: Compact and Expressive Prob

8 Nov 08, 2022
I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform some analysis,,

Virtual-Artificial-Intelligence-genesis- I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform

AKASH M 1 Nov 05, 2021
The UI as a mobile display for OP25

OP25 Mobile Control Head A 'remote' control head that interfaces with an OP25 instance. We take advantage of some data end-points left exposed for the

Sarah Rose Giddings 13 Dec 28, 2022
Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation in TensorFlow 2

Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation in TensorFlow 2 Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexan

Phan Nguyen 1 Dec 16, 2021
Stacked Recurrent Hourglass Network for Stereo Matching

SRH-Net: Stacked Recurrent Hourglass Introduction This repository is supplementary material of our RA-L submission, which helps reviewers to understan

28 Jan 03, 2023
CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes

CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes. CHERRY is based on a deep learning model, which consists of a graph convolutional encoder and a link

Kenneth Shang 12 Dec 15, 2022
PyTorch implementation of paper “Unbiased Scene Graph Generation from Biased Training”

A new codebase for popular Scene Graph Generation methods (2020). Visualization & Scene Graph Extraction on custom images/datasets are provided. It's also a PyTorch implementation of paper “Unbiased

Kaihua Tang 824 Jan 03, 2023
FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control

FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control by Dimitri von Rütte, Luca Biggio, Yannic Kilcher, Thomas Hofmann FIGARO: Generat

Dimitri 83 Jan 07, 2023
Fine-grained Post-training for Improving Retrieval-based Dialogue Systems - NAACL 2021

Fine-grained Post-training for Multi-turn Response Selection Implements the model described in the following paper Fine-grained Post-training for Impr

Janghoon Han 83 Dec 20, 2022
ICLR 2021 i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning

Introduction PyTorch code for the ICLR 2021 paper [i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning]. @inproceedings{lee2021i

Kibok Lee 68 Nov 27, 2022
Deal or No Deal? End-to-End Learning for Negotiation Dialogues

Introduction This is a PyTorch implementation of the following research papers: (1) Hierarchical Text Generation and Planning for Strategic Dialogue (

Facebook Research 1.4k Dec 29, 2022
Learning What and Where to Draw

###Learning What and Where to Draw Scott Reed, Zeynep Akata, Santosh Mohan, Samuel Tenka, Bernt Schiele, Honglak Lee This is the code for our NIPS 201

Scott Ellison Reed 337 Nov 18, 2022
[NeurIPS 2021 Spotlight] Code for Learning to Compose Visual Relations

Learning to Compose Visual Relations This is the pytorch codebase for the NeurIPS 2021 Spotlight paper Learning to Compose Visual Relations. Demo Imag

Nan Liu 88 Jan 04, 2023
Unofficial Alias-Free GAN implementation. Based on rosinality's version with expanded training and inference options.

Alias-Free GAN An unofficial version of Alias-Free Generative Adversarial Networks (https://arxiv.org/abs/2106.12423). This repository was heavily bas

dusk (they/them) 75 Dec 12, 2022
Bilinear attention networks for visual question answering

Bilinear Attention Networks This repository is the implementation of Bilinear Attention Networks for the visual question answering and Flickr30k Entit

Jin-Hwa Kim 506 Nov 29, 2022
LieTransformer: Equivariant Self-Attention for Lie Groups

LieTransformer This repository contains the implementation of the LieTransformer used for experiments in the paper LieTransformer: Equivariant Self-At

OxCSML (Oxford Computational Statistics and Machine Learning) 50 Dec 28, 2022
NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch

NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch, train it, collect statistics, and share it among the members of the community. It is not just a visual

HTM Community 93 Sep 30, 2022