Implementation of the paper "Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning"

Related tags

Deep LearningSPPR
Overview

Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning

This is the implementation of the paper "Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning" (accepted to CVPR2021).

For more information, check out the paper on [arXiv].

Requirements

  • Python 3.8
  • PyTorch 1.8.1 (>1.1.0)
  • cuda 11.2

Preparing Few-Shot Class-Incremental Learning Datasets

Download following datasets:

1. CIFAR-100

Automatically downloaded on torchvision.

2. MiniImageNet

(1) Download MiniImageNet train/test images[github], and prepare related datasets according to [TOPIC].

(2) or Download processed data from our Google Drive: [mini-imagenet.zip], (and locate the entire folder under datasets/ directory).

3. CUB200

(1) Download CUB200 train/test images, and prepare related datasets according to [TOPIC]:

wget http://www.vision.caltech.edu/visipedia-data/CUB-200-2011/CUB_200_2011.tgz

(2) or Download processed data from our Google Drive: [cub.zip], (and locate the entire folder under datasets/ directory).

Create a directory '../datasets' for the above three datasets and appropriately place each dataset to have following directory structure:

../                                                        # parent directory
├── ./                                           # current (project) directory
│   ├── log/                              # (dir.) running log
│   ├── pre/                              # (dir.) trained models for test.
│   ├── utils/                            # (dir.) implementation of paper 
│   ├── README.md                          # intstruction for reproduction
│   ├── test.sh                          # bash for testing.
│   ├── train.py                        # code for training model
│   └── train.sh                        # bash for training model
└── datasets/
    ├── CIFAR100/                      # CIFAR100 devkit
    ├── mini-imagenet/           
    │   ├── train/                         # (dir.) training images (from Google Drive)
    │   ├── test/                           # (dir.) testing images (from Google Drive)
    │   └── ..some csv files..
    └── cub/                                   # (dir.) contains 200 object classes
        ├── train/                             # (dir.) training images (from Google Drive)
        └── test/                               # (dir.) testing images (from Google Drive)

Training

Choose apporopriate lines in train.sh file.

sh train.sh
  • '--base_epochs' can be modified to control the initial accuracy ('Our' vs 'Our*' in our paper).
  • Training takes approx. several hours until convergence (trained with one 2080 Ti or 3090 GPUs).

Testing

1. Download pretrained models to the 'pre' folder.

Pretrained models are available on our [Google Drive].

2. Test

Choose apporopriate lines in train.sh file.

sh test.sh 

Main Results

The experimental results with 'test.sh 'for three datasets are shown below.

1. CIFAR-100

Model 1 2 3 4 5 6 7 8 9
iCaRL 64.10 53.28 41.69 34.13 27.93 25.06 20.41 15.48 13.73
TOPIC 64.10 56.03 47.89 42.99 38.02 34.60 31.67 28.35 25.86
Ours 63.97 65.86 61.31 57.6 53.39 50.93 48.27 45.36 43.32

2. MiniImageNet

Model 1 2 3 4 5 6 7 8 9
iCaRL 61.31 46.32 42.94 37.63 30.49 24.00 20.89 18.80 17.21
TOPIC 61.31 45.58 43.77 37.19 32.38 29.67 26.44 25.18 21.80
Ours 61.45 63.80 59.53 55.53 52.50 49.60 46.69 43.79 41.92

3. CUB200

Model 1 2 3 4 5 6 7 8 9 10 11
iCaRL 68.68 52.65 48.61 44.16 36.62 29.52 27.83 26.26 24.01 23.89 21.16
TOPIC 68.68 61.01 55.35 50.01 42.42 39.07 35.47 32.87 30.04 25.91 24.85
Ours 68.05 62.01 57.61 53.67 50.77 46.76 45.43 44.53 41.74 39.93 38.45

The presented results are slightly different from those in the paper, which are the average results of multiple tests.

BibTeX

If you use this code for your research, please consider citing:

@inproceedings{zhu2021self,
  title={Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning},
  author={Zhu, Kai and Cao, Yang and Zhai, Wei and Cheng, Jie and Zha, Zheng-Jun},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={6801--6810},
  year={2021}
}
Owner
Kai Zhu
Kai Zhu
Release of the ConditionalQA dataset

ConditionalQA Datasets accompanying the paper ConditionalQA: A Complex Reading Comprehension Dataset with Conditional Answers. Disclaimer This dataset

14 Oct 17, 2022
Rl-quickstart - Reinforcement Learning Quickstart

Reinforcement Learning Quickstart To get setup with the repository, git clone ht

UCLA DataRes 3 Jun 16, 2022
Pytorch Implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension)

DiffSinger - PyTorch Implementation PyTorch implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension). Status

Keon Lee 152 Jan 02, 2023
Orange Chicken: Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation

Orange Chicken: Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation This repository contains code and data f

Zoey Liu 0 Jan 07, 2022
Official pytorch code for "APP: Anytime Progressive Pruning"

APP: Anytime Progressive Pruning Diganta Misra1,2,3, Bharat Runwal2,4, Tianlong Chen5, Zhangyang Wang5, Irina Rish1,3 1 Mila - Quebec AI Institute,2 L

Landskape AI 12 Nov 22, 2022
CoSMA: Convolutional Semi-Regular Mesh Autoencoder. From Paper "Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes"

Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes Implementation of CoSMA: Convolutional Semi-Regular Mesh Autoencoder arXiv p

Fraunhofer SCAI 10 Oct 11, 2022
Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks

Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks Abstract Facial expression recognition in video

Bogireddy Sai Prasanna Teja Reddy 103 Dec 29, 2022
Crab is a flexible, fast recommender engine for Python that integrates classic information filtering recommendation algorithms in the world of scientific Python packages (numpy, scipy, matplotlib).

Crab - A Recommendation Engine library for Python Crab is a flexible, fast recommender engine for Python that integrates classic information filtering r

python-recsys 1.2k Dec 21, 2022
Official PyTorch Implementation of SSMix (Findings of ACL 2021)

SSMix: Saliency-based Span Mixup for Text Classification (Findings of ACL 2021) Official PyTorch Implementation of SSMix | Paper Abstract Data augment

Clova AI Research 52 Dec 27, 2022
2D&3D human pose estimation

Human Pose Estimation Papers [CVPR 2016] - 201511 [IJCAI 2016] - 201602 Other Action Recognition with Joints-Pooled 3D Deep Convolutional Descriptors

133 Jan 02, 2023
Image Captioning using CNN ,LSTM and Attention

Image Captioning using CNN ,LSTM and Attention This is a deeplearning model which tries to summarize an image into a text . Installation Install this

ASUTOSH GHANTO 1 Dec 16, 2021
Keras Implementation of Neural Style Transfer from the paper "A Neural Algorithm of Artistic Style"

Neural Style Transfer & Neural Doodles Implementation of Neural Style Transfer from the paper A Neural Algorithm of Artistic Style in Keras 2.0+ INetw

Somshubra Majumdar 2.2k Dec 31, 2022
This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their coordinates and detected labels.

This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their

Liron Bdolah 8 May 22, 2022
Simple image captioning model - CLIP prefix captioning.

Simple image captioning model - CLIP prefix captioning.

688 Jan 04, 2023
PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Representation

How to Reproduce our Results This repository contains PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Represen

opcrisis 46 Dec 15, 2022
A PyTorch re-implementation of Neural Radiance Fields

nerf-pytorch A PyTorch re-implementation Project | Video | Paper NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis Ben Mildenhall

Krishna Murthy 709 Jan 09, 2023
Dialect classification

Dialect-Classification This repository presents the data that was used in a talk at ICKL-5 (5th International Conference on Kurdish Linguistics) at th

Kurdish-BLARK 0 Nov 12, 2021
RRxIO - Robust Radar Visual/Thermal Inertial Odometry: Robust and accurate state estimation even in challenging visual conditions.

RRxIO - Robust Radar Visual/Thermal Inertial Odometry RRxIO offers robust and accurate state estimation even in challenging visual conditions. RRxIO c

Christopher Doer 64 Dec 29, 2022
This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset

HiRID-ICU-Benchmark This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset for which the manuscript can be found here.

Biomedical Informatics at ETH Zurich 30 Dec 16, 2022
Anderson Acceleration for Deep Learning

Anderson Accelerated Deep Learning (AADL) AADL is a Python package that implements the Anderson acceleration to speed-up the training of deep learning

Oak Ridge National Laboratory 7 Nov 24, 2022