Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

Overview

Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

This is the official implementation of our paper Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR), which has been accepted by WSDM2022.

Cold-start problem is still a very challenging problem in recommender systems. Fortunately, the interactions of the cold-start users in the auxiliary source domain can help cold-start recommendations in the target domain. How to transfer user's preferences from the source domain to the target domain, is the key issue in Cross-domain Recommendation (CDR) which is a promising solution to deal with the cold-start problem. Most existing methods model a common preference bridge to transfer preferences for all users. Intuitively, since preferences vary from user to user, the preference bridges of different users should be different. Along this line, we propose a novel framework named Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR). Specifically, a meta network fed with users' characteristic embeddings is learned to generate personalized bridge functions to achieve personalized transfer of preferences for each user. To learn the meta network stably, we employ a task-oriented optimization procedure. With the meta-generated personalized bridge function, the user's preference embedding in the source domain can be transformed into the target domain, and the transformed user preference embedding can be utilized as the initial embedding for the cold-start user in the target domain. Using large real-world datasets, we conduct extensive experiments to evaluate the effectiveness of PTUPCDR on both cold-start and warm-start stages.

Requirements

  • Python 3.6
  • Pytorch > 1.0
  • tensorflow
  • Pandas
  • Numpy
  • Tqdm

File Structure

.
├── code
│   ├── config.json         # Configurations
│   ├── entry.py            # Entry function
│   ├── models.py           # Models based on MF, GMF or Youtube DNN
│   ├── preprocessing.py    # Parsing and Segmentation
│   ├── readme.md
│   └── run.py              # Training and Evaluating 
└── data
    ├── mid                 # Mid data
    │   ├── Books.csv
    │   ├── CDs_and_Vinyl.csv
    │   └── Movies_and_TV.csv
    ├── raw                 # Raw data
    │   ├── reviews_Books_5.json.gz
    │   ├── reviews_CDs_and_Vinyl_5.json.gz
    │   └── reviews_Movies_and_TV_5.json.gz
    └── ready               # Ready to use
        ├── _2_8
        ├── _5_5
        └── _8_2

Dataset

We utilized the Amazon Reviews 5-score dataset. To download the Amazon dataset, you can use the following link: Amazon Reviews or Google Drive. Download the three domains: Music, Movies, Books (5-scores), and then put the data in ./data/raw.

You can use the following command to preprocess the dataset. The two-phase data preprocessing includes parsing the raw data and segmenting the mid data. The final data will be under ./data/ready.

python entry.py --process_data_mid 1 --process_data_ready 1

Run

Parameter Configuration:

  • task: different tasks within 1, 2 or 3, default for 1
  • base_model: different base models within MF, GMF or DNN, default for MF
  • ratio: train/test ratio within [0.8, 0.2], [0.5, 0.5] or [0.2, 0.8], default for [0.8, 0.2]
  • epoch: pre-training and CDR mapping training epoches, default for 10
  • seed: random seed, default for 2020
  • gpu: the index of gpu you will use, default for 0
  • lr: learning_rate, default for 0.01
  • model_name: base model for embedding, default for MF

You can run this model through:

# Run directly with default parameters 
python entry.py

# Reset training epoch to `10`
python entry.py --epoch 20

# Reset several parameters
python entry.py --gpu 1 --lr 0.02

# Reset seed (we use seed in[900, 1000, 10, 2020, 500])
python entry.py --seed 900

If you wanna try different weight decay, meta net dimension, embedding dimmension or more tasks, you may change the settings in ./code/config.json. Note that this repository consists of our PTUPCDR and three baselines, TGTOnly, CMF, and EMCDR.

Reference

Zhu Y, Tang Z, Liu Y, et al. Personalized Transfer of User Preferences for Cross-domain Recommendation[C]. The 15th ACM International Conference on Web Search and Data Mining, 2022.

or in bibtex style:

@inproceedings{zhu2022ptupcdr,
  title={Personalized Transfer of User Preferences for Cross-domain Recommendation},
  author={Zhu, Yongchun and Tang, Zhenwei and Liu, Yudan and Zhuang, Fuzhen, and Xie, Ruobing and Zhang, Xu and Lin, Leyu and He, Qing},
  inproceedings={The 15th ACM International Conference on Web Search and Data Mining},
  year={2022}
}
Owner
Yongchun Zhu
ICT Yongchun Zhu
Yongchun Zhu
SIR model parameter estimation using a novel algorithm for differentiated uniformization.

TenSIR Parameter estimation on epidemic data under the SIR model using a novel algorithm for differentiated uniformization of Markov transition rate m

The Spang Lab 4 Nov 30, 2022
This is the official Pytorch implementation of the paper "Diverse Motion Stylization for Multiple Style Domains via Spatial-Temporal Graph-Based Generative Model"

Diverse Motion Stylization (Official) This is the official Pytorch implementation of this paper. Diverse Motion Stylization for Multiple Style Domains

Soomin Park 28 Dec 16, 2022
COCO Style Dataset Generator GUI

A simple GUI-based COCO-style JSON Polygon masks' annotation tool to facilitate quick and efficient crowd-sourced generation of annotation masks and bounding boxes. Optionally, one could choose to us

Hans Krupakar 142 Dec 09, 2022
Unofficial PyTorch implementation of Neural Additive Models (NAM) by Agarwal, et al.

nam-pytorch Unofficial PyTorch implementation of Neural Additive Models (NAM) by Agarwal, et al. [abs, pdf] Installation You can access nam-pytorch vi

Rishabh Anand 11 Mar 14, 2022
NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM

NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM Automatic Evaluation Metric described in the papers BaryScore (EM

Pierre Colombo 28 Dec 28, 2022
It is an open dataset for object detection in remote sensing images.

RSOD-Dataset It is an open dataset for object detection in remote sensing images. The dataset includes aircraft, oiltank, playground and overpass. The

136 Dec 08, 2022
Convert Mission Planner (ArduCopter) Waypoint Missions to Litchi CSV Format to execute on DJI Drones

Mission Planner to Litchi Convert Mission Planner (ArduCopter) Waypoint Surveys to Litchi CSV Format to execute on DJI Drones Litchi doesn't support S

Yaros 24 Dec 09, 2022
The first dataset of composite images with rationality score indicating whether the object placement in a composite image is reasonable.

Object-Placement-Assessment-Dataset-OPA Object-Placement-Assessment (OPA) is to verify whether a composite image is plausible in terms of the object p

BCMI 53 Nov 15, 2022
Image based Human Fall Detection

Here I integrated the YOLOv5 object detection algorithm with my own created dataset which consists of human activity images to achieve low cost, high accuracy, and real-time computing requirements

UTTEJ KUMAR 12 Dec 11, 2022
Learning Continuous Image Representation with Local Implicit Image Function

LIIF This repository contains the official implementation for LIIF introduced in the following paper: Learning Continuous Image Representation with Lo

Yinbo Chen 1k Dec 25, 2022
A Learning-based Camera Calibration Toolbox

Learning-based Camera Calibration A Learning-based Camera Calibration Toolbox Paper The pdf file can be found here. @misc{zhang2022learningbased,

Eason 14 Dec 21, 2022
DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene.

DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene. We achieve NeRF-comparable novel-view synthesis quality with super-fast convergence.

sunset 709 Dec 31, 2022
Convenient tool for speeding up the intern/officer review process.

icpc-app-screen Convenient tool for speeding up the intern/officer applicant review process. Eliminates the pain from reading application responses of

1 Oct 30, 2021
A PyTorch implementation of the continual learning experiments with deep neural networks

Brain-Inspired Replay A PyTorch implementation of the continual learning experiments with deep neural networks described in the following paper: Brain

182 Dec 27, 2022
DaReCzech is a dataset for text relevance ranking in Czech

Dataset DaReCzech is a dataset for text relevance ranking in Czech. The dataset consists of more than 1.6M annotated query-documents pairs,

Seznam.cz a.s. 8 Jul 26, 2022
A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis

A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis This is the pytorch implementation for our MICCAI 2021 paper. A Mul

Jiarong Ye 7 Apr 04, 2022
Codes accompanying the paper "Learning Nearly Decomposable Value Functions with Communication Minimization" (ICLR 2020)

NDQ: Learning Nearly Decomposable Value Functions with Communication Minimization Note This codebase accompanies paper Learning Nearly Decomposable Va

Tonghan Wang 69 Nov 26, 2022
Implementation of Restricted Boltzmann Machine (RBM) and its variants in Tensorflow

xRBM Library Implementation of Restricted Boltzmann Machine (RBM) and its variants in Tensorflow Installation Using pip: pip install xrbm Examples Tut

Omid Alemi 55 Dec 29, 2022
Dense Gaussian Processes for Few-Shot Segmentation

DGPNet - Dense Gaussian Processes for Few-Shot Segmentation Welcome to the public repository for DGPNet. The paper is available at arxiv: https://arxi

37 Jan 07, 2023
The original implementation of TNDM used in the NeurIPS 2021 paper (no longer being updated)

TNDM - Targeted Neural Dynamical Modeling Note: This code is no longer being updated. The official re-implementation can be found at: https://github.c

1 Jul 21, 2022