Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

Overview

Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

This is the official implementation of our paper Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR), which has been accepted by WSDM2022.

Cold-start problem is still a very challenging problem in recommender systems. Fortunately, the interactions of the cold-start users in the auxiliary source domain can help cold-start recommendations in the target domain. How to transfer user's preferences from the source domain to the target domain, is the key issue in Cross-domain Recommendation (CDR) which is a promising solution to deal with the cold-start problem. Most existing methods model a common preference bridge to transfer preferences for all users. Intuitively, since preferences vary from user to user, the preference bridges of different users should be different. Along this line, we propose a novel framework named Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR). Specifically, a meta network fed with users' characteristic embeddings is learned to generate personalized bridge functions to achieve personalized transfer of preferences for each user. To learn the meta network stably, we employ a task-oriented optimization procedure. With the meta-generated personalized bridge function, the user's preference embedding in the source domain can be transformed into the target domain, and the transformed user preference embedding can be utilized as the initial embedding for the cold-start user in the target domain. Using large real-world datasets, we conduct extensive experiments to evaluate the effectiveness of PTUPCDR on both cold-start and warm-start stages.

Requirements

  • Python 3.6
  • Pytorch > 1.0
  • tensorflow
  • Pandas
  • Numpy
  • Tqdm

File Structure

.
├── code
│   ├── config.json         # Configurations
│   ├── entry.py            # Entry function
│   ├── models.py           # Models based on MF, GMF or Youtube DNN
│   ├── preprocessing.py    # Parsing and Segmentation
│   ├── readme.md
│   └── run.py              # Training and Evaluating 
└── data
    ├── mid                 # Mid data
    │   ├── Books.csv
    │   ├── CDs_and_Vinyl.csv
    │   └── Movies_and_TV.csv
    ├── raw                 # Raw data
    │   ├── reviews_Books_5.json.gz
    │   ├── reviews_CDs_and_Vinyl_5.json.gz
    │   └── reviews_Movies_and_TV_5.json.gz
    └── ready               # Ready to use
        ├── _2_8
        ├── _5_5
        └── _8_2

Dataset

We utilized the Amazon Reviews 5-score dataset. To download the Amazon dataset, you can use the following link: Amazon Reviews or Google Drive. Download the three domains: Music, Movies, Books (5-scores), and then put the data in ./data/raw.

You can use the following command to preprocess the dataset. The two-phase data preprocessing includes parsing the raw data and segmenting the mid data. The final data will be under ./data/ready.

python entry.py --process_data_mid 1 --process_data_ready 1

Run

Parameter Configuration:

  • task: different tasks within 1, 2 or 3, default for 1
  • base_model: different base models within MF, GMF or DNN, default for MF
  • ratio: train/test ratio within [0.8, 0.2], [0.5, 0.5] or [0.2, 0.8], default for [0.8, 0.2]
  • epoch: pre-training and CDR mapping training epoches, default for 10
  • seed: random seed, default for 2020
  • gpu: the index of gpu you will use, default for 0
  • lr: learning_rate, default for 0.01
  • model_name: base model for embedding, default for MF

You can run this model through:

# Run directly with default parameters 
python entry.py

# Reset training epoch to `10`
python entry.py --epoch 20

# Reset several parameters
python entry.py --gpu 1 --lr 0.02

# Reset seed (we use seed in[900, 1000, 10, 2020, 500])
python entry.py --seed 900

If you wanna try different weight decay, meta net dimension, embedding dimmension or more tasks, you may change the settings in ./code/config.json. Note that this repository consists of our PTUPCDR and three baselines, TGTOnly, CMF, and EMCDR.

Reference

Zhu Y, Tang Z, Liu Y, et al. Personalized Transfer of User Preferences for Cross-domain Recommendation[C]. The 15th ACM International Conference on Web Search and Data Mining, 2022.

or in bibtex style:

@inproceedings{zhu2022ptupcdr,
  title={Personalized Transfer of User Preferences for Cross-domain Recommendation},
  author={Zhu, Yongchun and Tang, Zhenwei and Liu, Yudan and Zhuang, Fuzhen, and Xie, Ruobing and Zhang, Xu and Lin, Leyu and He, Qing},
  inproceedings={The 15th ACM International Conference on Web Search and Data Mining},
  year={2022}
}
Owner
Yongchun Zhu
ICT Yongchun Zhu
Yongchun Zhu
Official implement of "CAT: Cross Attention in Vision Transformer".

CAT: Cross Attention in Vision Transformer This is official implement of "CAT: Cross Attention in Vision Transformer". Abstract Since Transformer has

100 Dec 15, 2022
The all new way to turn your boring vector meshes into the new fad in town; Voxels!

Voxelator The all new way to turn your boring vector meshes into the new fad in town; Voxels! Notes: I have not tested this on a rotated mesh. With fu

6 Feb 03, 2022
Pytorch implementation of "Neural Wireframe Renderer: Learning Wireframe to Image Translations"

Neural Wireframe Renderer: Learning Wireframe to Image Translations Pytorch implementation of ideas from the paper Neural Wireframe Renderer: Learning

Yuan Xue 7 Nov 14, 2022
Deep learned, hardware-accelerated 3D object pose estimation

Isaac ROS Pose Estimation Overview This repository provides NVIDIA GPU-accelerated packages for 3D object pose estimation. Using a deep learned pose e

NVIDIA Isaac ROS 41 Dec 18, 2022
Python with OpenCV - MediaPip Framework Hand Detection

Python HandDetection Python with OpenCV - MediaPip Framework Hand Detection Explore the docs » Contact Me About The Project It is a Computer vision pa

2 Jan 07, 2022
Learning Synthetic Environments and Reward Networks for Reinforcement Learning

Learning Synthetic Environments and Reward Networks for Reinforcement Learning We explore meta-learning agent-agnostic neural Synthetic Environments (

AutoML-Freiburg-Hannover 16 Sep 02, 2022
Simple sinc interpolation in PyTorch.

Kazane: simple sinc interpolation for 1D signal in PyTorch Kazane utilize FFT based convolution to provide fast sinc interpolation for 1D signal when

Chin-Yun Yu 10 May 03, 2022
Betafold - AlphaFold with tunings

BetaFold We (hegelab.org) craeted this standalone AlphaFold (AlphaFold-Multimer,

2 Aug 11, 2022
Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19

2s-AGCN Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19 Note PyTorch version should be 0.3! For PyTor

LShi 547 Dec 26, 2022
Intelligent Video Analytics toolkit based on different inference backends.

English | 中文 OpenIVA OpenIVA is an end-to-end intelligent video analytics development toolkit based on different inference backends, designed to help

Quantum Liu 15 Oct 27, 2022
Numerical-computing-is-fun - Learning numerical computing with notebooks for all ages.

As much as this series is to educate aspiring computer programmers and data scientists of all ages and all backgrounds, it is also a reminder to mysel

EKA foundation 758 Dec 25, 2022
Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders"

AAVAE Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders" Abstract Recent methods for self-supervised learnin

Grid AI Labs 48 Dec 12, 2022
Robust fine-tuning of zero-shot models

Robust fine-tuning of zero-shot models This repository contains code for the paper Robust fine-tuning of zero-shot models by Mitchell Wortsman*, Gabri

224 Dec 29, 2022
TipToiDog - Tip Toi Dog With Python

TipToiDog Was ist dieses Projekt? Meine 5-jährige Tochter spielt sehr gerne das

1 Feb 07, 2022
R-package accompanying the paper "Dynamic Factor Model for Functional Time Series: Identification, Estimation, and Prediction"

dffm The goal of dffm is to provide functionality to apply the methods developed in the paper “Dynamic Factor Model for Functional Time Series: Identi

Sven Otto 3 Dec 09, 2022
the code used for the preprint Embedding-based Instance Segmentation of Microscopy Images.

EmbedSeg Introduction This repository hosts the version of the code used for the preprint Embedding-based Instance Segmentation of Microscopy Images.

JugLab 88 Dec 25, 2022
CSKG is a commonsense knowledge graph that combines seven popular sources into a consolidated representation

CSKG: The CommonSense Knowledge Graph CSKG is a commonsense knowledge graph that combines seven popular sources into a consolidated representation: AT

USC ISI I2 85 Dec 12, 2022
Official code of "Mitigating the Mutual Error Amplification for Semi-Supervised Object Detection"

CrossTeaching-SSOD 0. Introduction Official code of "Mitigating the Mutual Error Amplification for Semi-Supervised Object Detection" This repo include

Bruno Ma 9 Nov 29, 2022
Roger Labbe 13k Dec 29, 2022
Measures input lag without dedicated hardware, performing motion detection on recorded or live video

What is InputLagTimer? This tool can measure input lag by analyzing a video where both the game controller and the game screen can be seen on a webcam

Bruno Gonzalez 4 Aug 18, 2022