Intelligent Video Analytics toolkit based on different inference backends.

Related tags

Deep LearningOpenIVA
Overview

English | 中文

OpenIVA

alt OpenIVA

OpenIVA is an end-to-end intelligent video analytics development toolkit based on different inference backends, designed to help individual users and start-ups quickly launch their own video AI services.
OpenIVA implements varied mainstream facial recognition, object detection, segmentation and landmark detection algorithms. And it provides an efficient and lightweight service deployment framework with a modular design. Users only need to replace the algorithm model used for their own tasks.

Features

  1. Common mainstream algorithms
  • Provides latest fast accurate pre-trained models for facial recognition, object detection, segmentation and landmark detection tasks
  1. Multi inference backends
  • Supports TensorlayerX/ TensorRT/ onnxruntime
  1. High performance
  • Achieves high performance on CPU/GPU/Ascend platforms, achieve inference speed above 3000it/s
  1. Asynchronous & multithreading
  • Use multithreading and queue to achieve high device utilization for inference and pre/post-processing
  1. Lightweight service
  • Use Flask for lightweight intelligent application services
  1. Modular design
  • You can quickly start your intelligent analysis service, only need to replace the AI models
  1. GUI visualization tools
  • Start analysis tasks only by clicking buttons, and show visualized results in GUI windows, suitable for multiple tasks

alt Sample Face landmark alt Sample Face recognition alt Sample YOLOX

Performance benchmark

Testing environments

  • i5-10400 6c12t
  • RTX3060
  • Ubuntu18.04
  • CUDA 11.1
  • TensorRT-7.2.3.4
  • onnxruntime with EPs:
    • CPU(Default)
    • CUDA(Manually Compiled)
    • OpenVINO(Manually Compiled)
    • TensorRT(Manually Compiled)

Performance

Facial recognition

Run
python test_landmark.py
batchsize=8, top_k=68, 67 faces in the image

  • Face detection
    Model face_detector_640_dy_sim

    onnxruntime EPs FPS faces per sec
    CPU 32 2075
    OpenVINO 81 5374
    CUDA 105 7074
    TensorRT(FP32) 124 7948
    TensorRT(FP16) 128 8527
  • Face landmark
    Model landmarks_68_pfld_dy_sim

    onnxruntime EPs faces per sec
    CPU 69
    OpenVINO 890
    CUDA 2061
    TensorRT(FP32) 2639
    TensorRT(FP16) 3131

Run
python test_face.py
batchsize=8

  • Face embedding
    Model arc_mbv2_ccrop_sim

    onnxruntime EPs faces per sec
    CPU 212
    OpenVINO 865
    CUDA 1790
    TensorRT(FP32) 2132
    TensorRT(FP16) 2812

Objects detection

Run
python test_yolo.py
batchsize=8 , 4 objects in the image

  • YOLOX objects detect
    Model yolox_s(ms_coco)

    onnxruntime EPs FPS Objects per sec
    CPU 9.3 37.2
    OpenVINO 13 52
    CUDA 77 307
    TensorRT(FP32) 95 380
    TensorRT(FP16) 128 512

    Model yolox_m(ms_coco)

    onnxruntime EPs FPS Objects per sec
    CPU 4 16
    OpenVINO 5.5 22
    CUDA 46.8 187
    TensorRT(FP32) 64 259
    TensorRT(FP16) 119 478

    Model yolox_nano(ms_coco)

    onnxruntime EPs FPS Objects per sec
    CPU 47 188
    OpenVINO 80 320
    CUDA 210 842
    TensorRT(FP32) 244 977
    TensorRT(FP16) 269 1079

    Model yolox_tiny(ms_coco)

    onnxruntime EPs FPS Objects per sec
    CPU 33 133
    OpenVINO 43 175
    CUDA 209 839
    TensorRT(FP32) 248 995
    TensorRT(FP16) 327 1310

Progress

  • Multi inference backends

    • onnxruntime
      • CPU
      • CUDA
      • TensorRT
      • OpenVINO
    • TensorlayerX
    • TensorRT
  • Asynchronous & multithreading

    • Data generate threads
    • AI compute threads
    • Multifunctional threads
    • Collecting threads
  • Lightweight service

    • prototype
  • GUI visualization tools

  • Common algorithms

    • Facial recognition

      • Face detection

      • Face landmark

      • Face embedding

    • Object detection

      • YOLOX
    • Semantic/Instance segmentation

    • Scene classification

      • prototype
  • Data I/O

    • Video decoding
      • OpenCV decoding
        • Local video files
        • Network stream videos
    • Data management
      • Facial identity database
      • Data serialization
Owner
Quantum Liu
RAmen
Quantum Liu
10x faster matrix and vector operations

Bolt is an algorithm for compressing vectors of real-valued data and running mathematical operations directly on the compressed representations. If yo

2.3k Jan 09, 2023
Implementation of character based convolutional neural network

Character Based CNN This repo contains a PyTorch implementation of a character-level convolutional neural network for text classification. The model a

Ahmed BESBES 248 Nov 21, 2022
PyTorch source code for Distilling Knowledge by Mimicking Features

LSHFM.detection This is the PyTorch source code for Distilling Knowledge by Mimicking Features. And this project contains code for object detection wi

Guo-Hua Wang 4 Dec 17, 2022
Simple embedding based text classifier inspired by fastText, implemented in tensorflow

FastText in Tensorflow This project is based on the ideas in Facebook's FastText but implemented in Tensorflow. However, it is not an exact replica of

Alan Patterson 306 Dec 02, 2022
Meta Representation Transformation for Low-resource Cross-lingual Learning

MetaXL: Meta Representation Transformation for Low-resource Cross-lingual Learning This repo hosts the code for MetaXL, published at NAACL 2021. [Meta

Microsoft 36 Aug 17, 2022
PyTorch Lightning implementation of Automatic Speech Recognition

lasr Lightening Automatic Speech Recognition An MIT License ASR research library, built on PyTorch-Lightning, for developing end-to-end ASR models. In

Soohwan Kim 40 Sep 19, 2022
Natural Posterior Network: Deep Bayesian Predictive Uncertainty for Exponential Family Distributions

Natural Posterior Network This repository provides the official implementation o

Oliver Borchert 54 Dec 06, 2022
Pytorch and Torch testing code of CartoonGAN

CartoonGAN-Test-Pytorch-Torch Pytorch and Torch testing code of CartoonGAN [Chen et al., CVPR18]. With the released pretrained models by the authors,

Yijun Li 642 Dec 27, 2022
Discord bot-CTFD-Thread-Parser - Discord bot CTFD-Thread-Parser

Discord bot CTFD-Thread-Parser Description: This tools is used to create automat

15 Mar 22, 2022
Decompose to Adapt: Cross-domain Object Detection via Feature Disentanglement

Decompose to Adapt: Cross-domain Object Detection via Feature Disentanglement In this project, we proposed a Domain Disentanglement Faster-RCNN (DDF)

19 Nov 24, 2022
Code and data of the EMNLP 2021 paper "Mind the Style of Text! Adversarial and Backdoor Attacks Based on Text Style Transfer"

StyleAttack Code and data of the EMNLP 2021 paper "Mind the Style of Text! Adversarial and Backdoor Attacks Based on Text Style Transfer" Prepare Pois

THUNLP 19 Nov 20, 2022
Deeprl - Standard DQN and dueling network for simple games

DeepRL This code implements the standard deep Q-learning and dueling network with experience replay (memory buffer) for playing simple games. DQN algo

Yao Zhou 6 Apr 12, 2020
Neural models of common sense. 🤖

Unicorn on Rainbow Neural models of common sense. This repository is for the paper: Unicorn on Rainbow: A Universal Commonsense Reasoning Model on a N

AI2 60 Jan 05, 2023
A basic reminder tool written in Python.

A simple Python Reminder Here's a basic reminder tool written in Python that speaks to the user and sends a notification. Run pip3 install pyttsx3 w

Sachit Yadav 4 Feb 05, 2022
Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Time Using Noisy Proxies

Deconfounding Temporal Autoencoder (DTA) This is a repository for the paper "Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Tim

Milan Kuzmanovic 3 Feb 04, 2022
Code of paper: "DropAttack: A Masked Weight Adversarial Training Method to Improve Generalization of Neural Networks"

DropAttack: A Masked Weight Adversarial Training Method to Improve Generalization of Neural Networks Abstract: Adversarial training has been proven to

倪仕文 (Shiwen Ni) 58 Nov 10, 2022
Self-labelling via simultaneous clustering and representation learning. (ICLR 2020)

Self-labelling via simultaneous clustering and representation learning 🆗 🆗 🎉 NEW models (20th August 2020): Added standard SeLa pretrained torchvis

Yuki M. Asano 469 Jan 02, 2023
Learning Time-Critical Responses for Interactive Character Control

Learning Time-Critical Responses for Interactive Character Control Abstract This code implements the paper Learning Time-Critical Responses for Intera

Movement Research Lab 227 Dec 31, 2022
Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Segmentation Transformer Implementation of Segmentation Transformer in PyTorch, a new model to achieve SOTA in semantic segmentation while using trans

Abhay Gupta 161 Dec 08, 2022
Face Recognition Attendance Project

Face-Recognition-Attendance-Project In This Project You will learn how to mark attendance using face recognition, Hello Guys This is Gautam Kumar, Thi

Gautam Kumar 1 Dec 03, 2022