Intelligent Video Analytics toolkit based on different inference backends.

Related tags

Deep LearningOpenIVA
Overview

English | 中文

OpenIVA

alt OpenIVA

OpenIVA is an end-to-end intelligent video analytics development toolkit based on different inference backends, designed to help individual users and start-ups quickly launch their own video AI services.
OpenIVA implements varied mainstream facial recognition, object detection, segmentation and landmark detection algorithms. And it provides an efficient and lightweight service deployment framework with a modular design. Users only need to replace the algorithm model used for their own tasks.

Features

  1. Common mainstream algorithms
  • Provides latest fast accurate pre-trained models for facial recognition, object detection, segmentation and landmark detection tasks
  1. Multi inference backends
  • Supports TensorlayerX/ TensorRT/ onnxruntime
  1. High performance
  • Achieves high performance on CPU/GPU/Ascend platforms, achieve inference speed above 3000it/s
  1. Asynchronous & multithreading
  • Use multithreading and queue to achieve high device utilization for inference and pre/post-processing
  1. Lightweight service
  • Use Flask for lightweight intelligent application services
  1. Modular design
  • You can quickly start your intelligent analysis service, only need to replace the AI models
  1. GUI visualization tools
  • Start analysis tasks only by clicking buttons, and show visualized results in GUI windows, suitable for multiple tasks

alt Sample Face landmark alt Sample Face recognition alt Sample YOLOX

Performance benchmark

Testing environments

  • i5-10400 6c12t
  • RTX3060
  • Ubuntu18.04
  • CUDA 11.1
  • TensorRT-7.2.3.4
  • onnxruntime with EPs:
    • CPU(Default)
    • CUDA(Manually Compiled)
    • OpenVINO(Manually Compiled)
    • TensorRT(Manually Compiled)

Performance

Facial recognition

Run
python test_landmark.py
batchsize=8, top_k=68, 67 faces in the image

  • Face detection
    Model face_detector_640_dy_sim

    onnxruntime EPs FPS faces per sec
    CPU 32 2075
    OpenVINO 81 5374
    CUDA 105 7074
    TensorRT(FP32) 124 7948
    TensorRT(FP16) 128 8527
  • Face landmark
    Model landmarks_68_pfld_dy_sim

    onnxruntime EPs faces per sec
    CPU 69
    OpenVINO 890
    CUDA 2061
    TensorRT(FP32) 2639
    TensorRT(FP16) 3131

Run
python test_face.py
batchsize=8

  • Face embedding
    Model arc_mbv2_ccrop_sim

    onnxruntime EPs faces per sec
    CPU 212
    OpenVINO 865
    CUDA 1790
    TensorRT(FP32) 2132
    TensorRT(FP16) 2812

Objects detection

Run
python test_yolo.py
batchsize=8 , 4 objects in the image

  • YOLOX objects detect
    Model yolox_s(ms_coco)

    onnxruntime EPs FPS Objects per sec
    CPU 9.3 37.2
    OpenVINO 13 52
    CUDA 77 307
    TensorRT(FP32) 95 380
    TensorRT(FP16) 128 512

    Model yolox_m(ms_coco)

    onnxruntime EPs FPS Objects per sec
    CPU 4 16
    OpenVINO 5.5 22
    CUDA 46.8 187
    TensorRT(FP32) 64 259
    TensorRT(FP16) 119 478

    Model yolox_nano(ms_coco)

    onnxruntime EPs FPS Objects per sec
    CPU 47 188
    OpenVINO 80 320
    CUDA 210 842
    TensorRT(FP32) 244 977
    TensorRT(FP16) 269 1079

    Model yolox_tiny(ms_coco)

    onnxruntime EPs FPS Objects per sec
    CPU 33 133
    OpenVINO 43 175
    CUDA 209 839
    TensorRT(FP32) 248 995
    TensorRT(FP16) 327 1310

Progress

  • Multi inference backends

    • onnxruntime
      • CPU
      • CUDA
      • TensorRT
      • OpenVINO
    • TensorlayerX
    • TensorRT
  • Asynchronous & multithreading

    • Data generate threads
    • AI compute threads
    • Multifunctional threads
    • Collecting threads
  • Lightweight service

    • prototype
  • GUI visualization tools

  • Common algorithms

    • Facial recognition

      • Face detection

      • Face landmark

      • Face embedding

    • Object detection

      • YOLOX
    • Semantic/Instance segmentation

    • Scene classification

      • prototype
  • Data I/O

    • Video decoding
      • OpenCV decoding
        • Local video files
        • Network stream videos
    • Data management
      • Facial identity database
      • Data serialization
Owner
Quantum Liu
RAmen
Quantum Liu
Code for ACL'2021 paper WARP 🌀 Word-level Adversarial ReProgramming

Code for ACL'2021 paper WARP 🌀 Word-level Adversarial ReProgramming. Outperforming `GPT-3` on SuperGLUE Few-Shot text classification.

YerevaNN 75 Nov 06, 2022
ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs

ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs This is the code of paper ConE: Cone Embeddings for Multi-Hop Reasoning over Knowl

MIRA Lab 33 Dec 07, 2022
LAMDA: Label Matching Deep Domain Adaptation

LAMDA: Label Matching Deep Domain Adaptation This is the implementation of the paper LAMDA: Label Matching Deep Domain Adaptation which has been accep

Tuan Nguyen 9 Sep 06, 2022
Sign Language Transformers (CVPR'20)

Sign Language Transformers (CVPR'20) This repo contains the training and evaluation code for the paper Sign Language Transformers: Sign Language Trans

Necati Cihan Camgoz 164 Dec 30, 2022
Beginner-friendly repository for Hacktober Fest 2021. Start your contribution to open source through baby steps. 💜

Hacktober Fest 2021 🎉 Open source is changing the world – one contribution at a time! 🎉 This repository is made for beginners who are unfamiliar wit

Abhilash M Nair 32 Dec 11, 2022
Cleaned test data list of DukeMTMC-reID, ICCV2021

Cleaned DukeMTMC-reID Cleaned data list of DukeMTMC-reID released with our paper accepted by ICCV 2021: Learning Instance-level Spatial-Temporal Patte

14 Feb 19, 2022
(NeurIPS 2021) Realistic Evaluation of Transductive Few-Shot Learning

Realistic evaluation of transductive few-shot learning Introduction This repo contains the code for our NeurIPS 2021 submitted paper "Realistic evalua

Olivier Veilleux 14 Dec 13, 2022
CNN designed for pansharpening

PROGRESSIVE BAND-SEPARATED CONVOLUTIONAL NEURAL NETWORK FOR MULTISPECTRAL PANSHARPENING This repository contains main code for the paper PROGRESSIVE B

SerendipitysX 3 Dec 29, 2021
PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

Saim Wani 4 May 08, 2022
Temporally Coherent GAN SIGGRAPH project.

TecoGAN This repository contains source code and materials for the TecoGAN project, i.e. code for a TEmporally COherent GAN for video super-resolution

Duc Linh Nguyen 2 Jan 18, 2022
Unofficial Implementation of RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series (AAAI 2019)

RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series (AAAI 2019) This repository contains python (3.5.2) implementation of

Doyup Lee 222 Dec 21, 2022
Normalization Calibration (NorCal) for Long-Tailed Object Detection and Instance Segmentation

NorCal Normalization Calibration (NorCal) for Long-Tailed Object Detection and Instance Segmentation On Model Calibration for Long-Tailed Object Detec

Tai-Yu (Daniel) Pan 24 Dec 25, 2022
WeakVRD-Captioning - Implementation of paper Improving Image Captioning with Better Use of Caption

WeakVRD-Captioning - Implementation of paper Improving Image Captioning with Better Use of Caption

30 Oct 28, 2022
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥

face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa

Zhao Jian 3.1k Jan 02, 2023
Material related to the Principles of Cloud Computing course.

CloudComputingCourse Material related to the Principles of Cloud Computing course. This repository comprises material that I use to teach my Principle

Aniruddha Gokhale 15 Dec 02, 2022
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

Deformable 3D Convolution for Video Super-Resolution Pytorch implementation of l

Xinyi Ying 28 Dec 15, 2022
Invasive Plant Species Identification

Invasive_Plant_Species_Identification Used LiDAR Odometry and Mapping (LOAM) to create a 3D point cloud map which can be used to identify invasive pla

2 May 12, 2022
Single Image Deraining Using Bilateral Recurrent Network (TIP 2020)

Single Image Deraining Using Bilateral Recurrent Network Introduction Single image deraining has received considerable progress based on deep convolut

23 Aug 10, 2022
Robustness between the worst and average case

Robustness between the worst and average case A repository that implements intermediate robustness training and evaluation from the NeurIPS 2021 paper

CMU Locus Lab 16 Dec 02, 2022
The source code of "SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation", accepted to WACV 2022.

SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation The source code of our work "SIDE: Center-based Stereo 3D Detecto

10 Dec 18, 2022