Intelligent Video Analytics toolkit based on different inference backends.

Related tags

Deep LearningOpenIVA
Overview

English | 中文

OpenIVA

alt OpenIVA

OpenIVA is an end-to-end intelligent video analytics development toolkit based on different inference backends, designed to help individual users and start-ups quickly launch their own video AI services.
OpenIVA implements varied mainstream facial recognition, object detection, segmentation and landmark detection algorithms. And it provides an efficient and lightweight service deployment framework with a modular design. Users only need to replace the algorithm model used for their own tasks.

Features

  1. Common mainstream algorithms
  • Provides latest fast accurate pre-trained models for facial recognition, object detection, segmentation and landmark detection tasks
  1. Multi inference backends
  • Supports TensorlayerX/ TensorRT/ onnxruntime
  1. High performance
  • Achieves high performance on CPU/GPU/Ascend platforms, achieve inference speed above 3000it/s
  1. Asynchronous & multithreading
  • Use multithreading and queue to achieve high device utilization for inference and pre/post-processing
  1. Lightweight service
  • Use Flask for lightweight intelligent application services
  1. Modular design
  • You can quickly start your intelligent analysis service, only need to replace the AI models
  1. GUI visualization tools
  • Start analysis tasks only by clicking buttons, and show visualized results in GUI windows, suitable for multiple tasks

alt Sample Face landmark alt Sample Face recognition alt Sample YOLOX

Performance benchmark

Testing environments

  • i5-10400 6c12t
  • RTX3060
  • Ubuntu18.04
  • CUDA 11.1
  • TensorRT-7.2.3.4
  • onnxruntime with EPs:
    • CPU(Default)
    • CUDA(Manually Compiled)
    • OpenVINO(Manually Compiled)
    • TensorRT(Manually Compiled)

Performance

Facial recognition

Run
python test_landmark.py
batchsize=8, top_k=68, 67 faces in the image

  • Face detection
    Model face_detector_640_dy_sim

    onnxruntime EPs FPS faces per sec
    CPU 32 2075
    OpenVINO 81 5374
    CUDA 105 7074
    TensorRT(FP32) 124 7948
    TensorRT(FP16) 128 8527
  • Face landmark
    Model landmarks_68_pfld_dy_sim

    onnxruntime EPs faces per sec
    CPU 69
    OpenVINO 890
    CUDA 2061
    TensorRT(FP32) 2639
    TensorRT(FP16) 3131

Run
python test_face.py
batchsize=8

  • Face embedding
    Model arc_mbv2_ccrop_sim

    onnxruntime EPs faces per sec
    CPU 212
    OpenVINO 865
    CUDA 1790
    TensorRT(FP32) 2132
    TensorRT(FP16) 2812

Objects detection

Run
python test_yolo.py
batchsize=8 , 4 objects in the image

  • YOLOX objects detect
    Model yolox_s(ms_coco)

    onnxruntime EPs FPS Objects per sec
    CPU 9.3 37.2
    OpenVINO 13 52
    CUDA 77 307
    TensorRT(FP32) 95 380
    TensorRT(FP16) 128 512

    Model yolox_m(ms_coco)

    onnxruntime EPs FPS Objects per sec
    CPU 4 16
    OpenVINO 5.5 22
    CUDA 46.8 187
    TensorRT(FP32) 64 259
    TensorRT(FP16) 119 478

    Model yolox_nano(ms_coco)

    onnxruntime EPs FPS Objects per sec
    CPU 47 188
    OpenVINO 80 320
    CUDA 210 842
    TensorRT(FP32) 244 977
    TensorRT(FP16) 269 1079

    Model yolox_tiny(ms_coco)

    onnxruntime EPs FPS Objects per sec
    CPU 33 133
    OpenVINO 43 175
    CUDA 209 839
    TensorRT(FP32) 248 995
    TensorRT(FP16) 327 1310

Progress

  • Multi inference backends

    • onnxruntime
      • CPU
      • CUDA
      • TensorRT
      • OpenVINO
    • TensorlayerX
    • TensorRT
  • Asynchronous & multithreading

    • Data generate threads
    • AI compute threads
    • Multifunctional threads
    • Collecting threads
  • Lightweight service

    • prototype
  • GUI visualization tools

  • Common algorithms

    • Facial recognition

      • Face detection

      • Face landmark

      • Face embedding

    • Object detection

      • YOLOX
    • Semantic/Instance segmentation

    • Scene classification

      • prototype
  • Data I/O

    • Video decoding
      • OpenCV decoding
        • Local video files
        • Network stream videos
    • Data management
      • Facial identity database
      • Data serialization
Owner
Quantum Liu
RAmen
Quantum Liu
[CVPR 2022 Oral] Versatile Multi-Modal Pre-Training for Human-Centric Perception

Versatile Multi-Modal Pre-Training for Human-Centric Perception Fangzhou Hong1  Liang Pan1  Zhongang Cai1,2,3  Ziwei Liu1* 1S-Lab, Nanyang Technologic

Fangzhou Hong 96 Jan 03, 2023
The world's simplest facial recognition api for Python and the command line

Face Recognition You can also read a translated version of this file in Chinese 简体中文版 or in Korean 한국어 or in Japanese 日本語. Recognize and manipulate fa

Adam Geitgey 46.9k Jan 03, 2023
nanodet_plus,yolov5_v6.0

OAK_Detection OAK设备上适配nanodet_plus,yolov5_v6.0 Environment pytorch = 1.7.0

炼丹去了 1 Feb 18, 2022
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au

14 Nov 28, 2022
Vignette is a face tracking software for characters using osu!framework.

Vignette is a face tracking software for characters using osu!framework. Unlike most solutions, Vignette is: Made with osu!framework, the game framewo

Vignette 412 Dec 28, 2022
Mixup for Supervision, Semi- and Self-Supervision Learning Toolbox and Benchmark

OpenSelfSup News Downstream tasks now support more methods(Mask RCNN-FPN, RetinaNet, Keypoints RCNN) and more datasets(Cityscapes). 'GaussianBlur' is

AI Lab, Westlake University 332 Jan 03, 2023
This is a official repository of SimViT.

SimViT This is a official repository of SimViT. We will open our models and codes about object detection and semantic segmentation soon. Our code refe

ligang 57 Dec 15, 2022
More than a hundred strange attractors

dysts Analyze more than a hundred chaotic systems. Basic Usage Import a model and run a simulation with default initial conditions and parameter value

William Gilpin 185 Dec 23, 2022
Style transfer between images was performed using the VGG19 model

Style transfer between images was performed using the VGG19 model. The necessary codes, libraries and all other information of this project are available below

Onur yılmaz 2 May 09, 2022
Survival analysis (SA) is a well-known statistical technique for the study of temporal events.

DAGSurv Survival analysis (SA) is a well-known statistical technique for the study of temporal events. In SA, time-to-an-event data is modeled using a

Rahul Kukreja 1 Sep 05, 2022
Unofficial implementation (replicates paper results!) of MINER: Multiscale Implicit Neural Representations in pytorch-lightning

MINER_pl Unofficial implementation of MINER: Multiscale Implicit Neural Representations in pytorch-lightning. 📖 Ref readings Laplacian pyramid explan

AI葵 51 Nov 28, 2022
This folder contains the implementation of the multi-relational attribute propagation algorithm.

MrAP This folder contains the implementation of the multi-relational attribute propagation algorithm. It requires the package pytorch-scatter. Please

6 Dec 06, 2022
Toward Multimodal Image-to-Image Translation

BicycleGAN Project Page | Paper | Video Pytorch implementation for multimodal image-to-image translation. For example, given the same night image, our

Jun-Yan Zhu 1.4k Dec 22, 2022
Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation

TVT Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation Datasets: Digit: MNIST, SVHN, USPS Object: Office, Office-Home, Vi

37 Dec 15, 2022
Supervised Contrastive Learning for Product Matching

Contrastive Product Matching This repository contains the code and data download links to reproduce the experiments of the paper "Supervised Contrasti

Web-based Systems Group @ University of Mannheim 18 Dec 10, 2022
The Python3 import playground

The Python3 import playground I have been confused about python modules and packages, this text tries to clear the topic up a bit. Sources: https://ch

Michael Moser 5 Feb 22, 2022
Adversarial examples to the new ConvNeXt architecture

Adversarial examples to the new ConvNeXt architecture To get adversarial examples to the ConvNeXt architecture, run the Colab: https://github.com/stan

Stanislav Fort 19 Sep 18, 2022
Implementation of a Transformer using ReLA (Rectified Linear Attention)

ReLA (Rectified Linear Attention) Transformer Implementation of a Transformer using ReLA (Rectified Linear Attention). It will also contain an attempt

Phil Wang 49 Oct 14, 2022
Semantically Contrastive Learning for Low-light Image Enhancement

Semantically Contrastive Learning for Low-light Image Enhancement Here, we propose an effective semantically contrastive learning paradigm for Low-lig

48 Dec 16, 2022
[CVPR 2022] "The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy" by Tianlong Chen, Zhenyu Zhang, Yu Cheng, Ahmed Awadallah, Zhangyang Wang

The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy Codes for this paper: [CVPR 2022] The Pr

VITA 16 Nov 26, 2022