Intelligent Video Analytics toolkit based on different inference backends.

Related tags

Deep LearningOpenIVA
Overview

English | 中文

OpenIVA

alt OpenIVA

OpenIVA is an end-to-end intelligent video analytics development toolkit based on different inference backends, designed to help individual users and start-ups quickly launch their own video AI services.
OpenIVA implements varied mainstream facial recognition, object detection, segmentation and landmark detection algorithms. And it provides an efficient and lightweight service deployment framework with a modular design. Users only need to replace the algorithm model used for their own tasks.

Features

  1. Common mainstream algorithms
  • Provides latest fast accurate pre-trained models for facial recognition, object detection, segmentation and landmark detection tasks
  1. Multi inference backends
  • Supports TensorlayerX/ TensorRT/ onnxruntime
  1. High performance
  • Achieves high performance on CPU/GPU/Ascend platforms, achieve inference speed above 3000it/s
  1. Asynchronous & multithreading
  • Use multithreading and queue to achieve high device utilization for inference and pre/post-processing
  1. Lightweight service
  • Use Flask for lightweight intelligent application services
  1. Modular design
  • You can quickly start your intelligent analysis service, only need to replace the AI models
  1. GUI visualization tools
  • Start analysis tasks only by clicking buttons, and show visualized results in GUI windows, suitable for multiple tasks

alt Sample Face landmark alt Sample Face recognition alt Sample YOLOX

Performance benchmark

Testing environments

  • i5-10400 6c12t
  • RTX3060
  • Ubuntu18.04
  • CUDA 11.1
  • TensorRT-7.2.3.4
  • onnxruntime with EPs:
    • CPU(Default)
    • CUDA(Manually Compiled)
    • OpenVINO(Manually Compiled)
    • TensorRT(Manually Compiled)

Performance

Facial recognition

Run
python test_landmark.py
batchsize=8, top_k=68, 67 faces in the image

  • Face detection
    Model face_detector_640_dy_sim

    onnxruntime EPs FPS faces per sec
    CPU 32 2075
    OpenVINO 81 5374
    CUDA 105 7074
    TensorRT(FP32) 124 7948
    TensorRT(FP16) 128 8527
  • Face landmark
    Model landmarks_68_pfld_dy_sim

    onnxruntime EPs faces per sec
    CPU 69
    OpenVINO 890
    CUDA 2061
    TensorRT(FP32) 2639
    TensorRT(FP16) 3131

Run
python test_face.py
batchsize=8

  • Face embedding
    Model arc_mbv2_ccrop_sim

    onnxruntime EPs faces per sec
    CPU 212
    OpenVINO 865
    CUDA 1790
    TensorRT(FP32) 2132
    TensorRT(FP16) 2812

Objects detection

Run
python test_yolo.py
batchsize=8 , 4 objects in the image

  • YOLOX objects detect
    Model yolox_s(ms_coco)

    onnxruntime EPs FPS Objects per sec
    CPU 9.3 37.2
    OpenVINO 13 52
    CUDA 77 307
    TensorRT(FP32) 95 380
    TensorRT(FP16) 128 512

    Model yolox_m(ms_coco)

    onnxruntime EPs FPS Objects per sec
    CPU 4 16
    OpenVINO 5.5 22
    CUDA 46.8 187
    TensorRT(FP32) 64 259
    TensorRT(FP16) 119 478

    Model yolox_nano(ms_coco)

    onnxruntime EPs FPS Objects per sec
    CPU 47 188
    OpenVINO 80 320
    CUDA 210 842
    TensorRT(FP32) 244 977
    TensorRT(FP16) 269 1079

    Model yolox_tiny(ms_coco)

    onnxruntime EPs FPS Objects per sec
    CPU 33 133
    OpenVINO 43 175
    CUDA 209 839
    TensorRT(FP32) 248 995
    TensorRT(FP16) 327 1310

Progress

  • Multi inference backends

    • onnxruntime
      • CPU
      • CUDA
      • TensorRT
      • OpenVINO
    • TensorlayerX
    • TensorRT
  • Asynchronous & multithreading

    • Data generate threads
    • AI compute threads
    • Multifunctional threads
    • Collecting threads
  • Lightweight service

    • prototype
  • GUI visualization tools

  • Common algorithms

    • Facial recognition

      • Face detection

      • Face landmark

      • Face embedding

    • Object detection

      • YOLOX
    • Semantic/Instance segmentation

    • Scene classification

      • prototype
  • Data I/O

    • Video decoding
      • OpenCV decoding
        • Local video files
        • Network stream videos
    • Data management
      • Facial identity database
      • Data serialization
Owner
Quantum Liu
RAmen
Quantum Liu
Pytorch implementation of YOLOX、PPYOLO、PPYOLOv2、FCOS an so on.

简体中文 | English miemiedetection 概述 miemiedetection是女装大佬咩酱基于YOLOX进行二次开发的个人检测库(使用的深度学习框架为pytorch),支持Windows、Linux系统,以女装大佬咩酱的名字命名。miemiedetection是一个不需要安装的

248 Jan 02, 2023
OMAMO: orthology-based model organism selection

OMAMO: orthology-based model organism selection OMAMO is a tool that suggests the best model organism to study a biological process based on orthologo

Dessimoz Lab 5 Apr 22, 2022
[ICLR 2021] "CPT: Efficient Deep Neural Network Training via Cyclic Precision" by Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin

CPT: Efficient Deep Neural Network Training via Cyclic Precision Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin Accep

26 Oct 25, 2022
EssentialMC2 Video Understanding

EssentialMC2 Introduction EssentialMC2 is a complete system to solve video understanding tasks including MHRL(representation learning), MECR2( relatio

Alibaba 106 Dec 11, 2022
Official implementation of our paper "Learning to Bootstrap for Combating Label Noise"

Learning to Bootstrap for Combating Label Noise This repo is the official implementation of our paper "Learning to Bootstrap for Combating Label Noise

21 Apr 09, 2022
wlad 2 Dec 19, 2022
CLIP + VQGAN / PixelDraw

clipit Yet Another VQGAN-CLIP Codebase This started as a fork of @nerdyrodent's VQGAN-CLIP code which was based on the notebooks of @RiversWithWings a

dribnet 276 Dec 12, 2022
Capture all information throughout your model's development in a reproducible way and tie results directly to the model code!

Rubicon Purpose Rubicon is a data science tool that captures and stores model training and execution information, like parameters and outcomes, in a r

Capital One 97 Jan 03, 2023
Auto-Lama combines object detection and image inpainting to automate object removals

Auto-Lama Auto-Lama combines object detection and image inpainting to automate object removals. It is build on top of DE:TR from Facebook Research and

44 Dec 09, 2022
Tensorflow 2.x implementation of Vision-Transformer model

Vision Transformer Unofficial Tensorflow 2.x implementation of the Transformer based Image Classification model proposed by the paper AN IMAGE IS WORT

Soumik Rakshit 16 Jul 20, 2022
Predict and time series avocado hass

RECOMMENDER SYSTEM MARKETING TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU 1. Giới thiệu - Tiki là một hệ sinh thái thương mại "all in one", trong đó có tiki.vn, là

hieulmsc 3 Jan 10, 2022
CLADE - Efficient Semantic Image Synthesis via Class-Adaptive Normalization (TPAMI 2021)

Efficient Semantic Image Synthesis via Class-Adaptive Normalization (Accepted by TPAMI)

tzt 49 Nov 17, 2022
Towards Representation Learning for Atmospheric Dynamics (AtmoDist)

Towards Representation Learning for Atmospheric Dynamics (AtmoDist) The prediction of future climate scenarios under anthropogenic forcing is critical

Sebastian Hoffmann 4 Dec 15, 2022
A deep learning network built with TensorFlow and Keras to classify gender and estimate age.

Convolutional Neural Network (CNN). This repository contains a source code of a deep learning network built with TensorFlow and Keras to classify gend

Pawel Dziemiach 1 Dec 18, 2021
Get the partition that a file belongs and the percentage of space that consumes

tinos_eisai_sy Get the partition that a file belongs and the percentage of space that consumes (works only with OSes that use the df command) tinos_ei

Konstantinos Patronas 6 Jan 24, 2022
Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E. Evaluated on benchmark dataset Office31.

Deep-Unsupervised-Domain-Adaptation Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E.

Alan Grijalva 49 Dec 20, 2022
[NeurIPS 2021] "G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of Teacher Discriminators"

G-PATE This is the official code base for our NeurIPS 2021 paper: "G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of T

AI Secure 14 Oct 12, 2022
A very lightweight monitoring system for Raspberry Pi clusters running Kubernetes.

OMNI A very lightweight monitoring system for Raspberry Pi clusters running Kubernetes. Why? When I finished my Kubernetes cluster using a few Raspber

Matias Godoy 148 Dec 29, 2022
Does Oversizing Improve Prosumer Profitability in a Flexibility Market? - A Sensitivity Analysis using PV-battery System

Does Oversizing Improve Prosumer Profitability in a Flexibility Market? - A Sensitivity Analysis using PV-battery System The possibilities to involve

Babu Kumaran Nalini 0 Nov 19, 2021